scholarly journals Shape-Preserving Widths of Weighted Sobolev-Type Classes of Positive, Monotone, and Convex Functions on a Finite Interval

2003 ◽  
Vol 19 (1) ◽  
pp. 23-58 ◽  
Author(s):  
Konovalov ◽  
Leviatan
2006 ◽  
Vol 140 (2) ◽  
pp. 101-126 ◽  
Author(s):  
J. Gilewicz ◽  
V.N. Konovalov ◽  
D. Leviatan

2001 ◽  
Vol 113 (2) ◽  
pp. 266-297 ◽  
Author(s):  
V.N Konovalov ◽  
D Leviatan

1997 ◽  
Vol 38 (3) ◽  
pp. 567-583 ◽  
Author(s):  
Yu. G. Reshetnyak

Author(s):  
M. U. Kalmykov ◽  
S. P. Sidorov

We will estimate the upper and the lower bounds of the integral∫01Ω(t)dμ(t), whereμruns over all discrete measures, positive on some cones of generalized convex functions, and satisfying certain moment conditions with respect to a given Chebyshev system. Then we apply these estimations to find the error of optimal shape-preserving interpolation.


2005 ◽  
Vol 35 (2) ◽  
pp. 445-478 ◽  
Author(s):  
Z. Ditzian ◽  
V.N. Konovalov ◽  
D. Leviatan
Keyword(s):  

1974 ◽  
Vol 26 (6) ◽  
pp. 1321-1340 ◽  
Author(s):  
Kong-Ming Chong

In [6], by means of convex functions Φ :R→R, Hardy, Littlewood and Pólya proved a theorem characterizing the strong spectral order relation for any two measurable functions which are defined on a finite interval and which they implicitly assumed to be essentially bounded (cf. [6, the approximation lemma on p. 150 and Theorem 9 on p. 151 of their paper]; see also L. Mirsky [10, pp. 328-329] and H. D. Brunk [1,Theorem A, p. 820]).


2007 ◽  
Vol 27 (2) ◽  
pp. 211-236 ◽  
Author(s):  
V. N. Konovalov ◽  
D. Leviatan

Sign in / Sign up

Export Citation Format

Share Document