sobolev type
Recently Published Documents


TOTAL DOCUMENTS

691
(FIVE YEARS 163)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alejandro Molano

Purpose In this paper, the authors take the first step in the study of constructive methods by using Sobolev polynomials.Design/methodology/approach To do that, the authors use the connection formulas between Sobolev polynomials and classical Laguerre polynomials, as well as the well-known Fourier coefficients for these latter.Findings Then, the authors compute explicit formulas for the Fourier coefficients of some families of Laguerre–Sobolev type orthogonal polynomials over a finite interval. The authors also describe an oscillatory region in each case as a reasonable choice for approximation purposes.Originality/value In order to take the first step in the study of constructive methods by using Sobolev polynomials, this paper deals with Fourier coefficients for certain families of polynomials orthogonal with respect to the Sobolev type inner product. As far as the authors know, this particular problem has not been addressed in the existing literature.


Author(s):  
S.G. Samko ◽  
S.M. Umarkhadzhiev

We introduce ``local grand'' Lebesgue spaces $L^{p),\theta}_{x_0,a}(\Omega)$, $0<p<\infty,$ $\Omega \subseteq \mathbb{R}^n$, where the process of ``grandization'' relates to a single point $x_0\in \Omega$, contrast to the case of usual known grand spaces $L^{p),\theta}(\Omega)$, where ``grandization'' relates to all the points of $\Omega$. We define the space $L^{p),\theta}_{x_0,a}(\Omega)$ by means of the weight $a(|x-x_0|)^{\varepsilon p}$ with small exponent, $a(0)=0$. Under some rather wide assumptions on the choice of the local ``grandizer'' $a(t)$, we prove some properties of these spaces including their equivalence under different choices of the grandizers $a(t)$ and show that the maximal, singular and Hardy operators preserve such a ``single-point grandization'' of Lebesgue spaces $L^p(\Omega)$, $1<p<\infty$, provided that the lower Matuszewska--Orlicz index of the function $a$ is positive. A Sobolev-type theorem is also proved in local grand spaces under the same condition on the grandizer.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tariq Mahmood ◽  
Mei Sun

AbstractThis paper considers the initial-boundary value problem of the one-dimensional full compressible nematic liquid crystal flow problem. The initial density is allowed to touch vacuum, and the viscous and heat conductivity coefficients are kept to be positive constants. Global existence of strong solutions is established for any $H^{2}$ H 2 initial data in the Lagrangian flow map coordinate, which holds for both vacuum and non-vacuum case. The key difficulty is caused by the lack of the positive lower bound of the density. To overcome such difficulty, it is observed that the ratio of $\frac{\rho _{0(y)}}{\rho (t,y)}$ ρ 0 ( y ) ρ ( t , y ) is proportional to the time integral of the upper bound of temperature and vector director field, along the trajectory. Density weighted Sobolev type inequalities are constructed for both temperature and director field in terms of $\frac{\rho _{0(y)}}{\rho (t,y)}$ ρ 0 ( y ) ρ ( t , y ) and small dependence on their dissipation estimates. Besides this, to deal with cross terms arising due to liquid crystal flow, higher order priori estimates are established by using effective viscous flux.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ferit Gürbüz ◽  
Ahmed Loulit

It is known, in harmonic analysis theory, that maximal operators measure local smoothness of L p functions. These operators are used to study many important problems of function theory such as the embedding theorems of Sobolev type and description of Sobolev space in terms of the metric and measure. We study the Sobolev-type embedding results on weighted Besov–Triebel–Lizorkin spaces via the sharp maximal functions. The purpose of this paper is to study the extent of smoothness on weighted function spaces under the condition M α # f ∈ L p , μ , where μ is a lower doubling measure, M α # f stands for the sharp maximal function of f , and 0 ≤ α ≤ 1 is the degree of smoothness.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Dehghan ◽  
Baharak Hooshyarfarzin ◽  
Mostafa Abbaszadeh

Purpose This study aims to use the polynomial approximation method based on the Pascal polynomial basis for obtaining the numerical solutions of partial differential equations. Moreover, this method does not require establishing grids in the computational domain. Design/methodology/approach In this study, the authors present a meshfree method based on Pascal polynomial expansion for the numerical solution of the Sobolev equation. In general, Sobolev-type equations have several applications in physics and mechanical engineering. Findings The authors use the Crank-Nicolson scheme to discrete the time variable and the Pascal polynomial-based (PPB) method for discretizing the spatial variables. But it is clear that increasing the value of the final time or number of time steps, will bear a lot of costs during numerical simulations. An important purpose of this paper is to reduce the execution time for applying the PPB method. To reach this aim, the proper orthogonal decomposition technique has been combined with the PPB method. Originality/value The developed procedure is tested on various examples of one-dimensional, two-dimensional and three-dimensional versions of the governed equation on the rectangular and irregular domains to check its accuracy and validity.


2021 ◽  
Vol 55 (1) ◽  
pp. 1-12
Author(s):  
Edilberto Arroyo-Ortiz

We present a basis of p-adic wavelets for Sobolev-type spaces consisting of eigenvectors of certain pseudodifferential operators. Our result extends a well-known result due to S. Kozyrev.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
K. Kavitha ◽  
Kottakkaran Sooppy Nisar ◽  
Anurag Shukla ◽  
Velusamy Vijayakumar ◽  
Shahram Rezapour

AbstractThe goal of this study is to propose the existence results for the Sobolev-type Hilfer fractional integro-differential systems with infinite delay. We intend to implement the outcomes and realities of fractional theory to obtain the main results by Monch’s fixed point technique. Moreover, we show the existence and controllability of the thought about the fractional system with the nonlocal condition. In addition, an application to illustrate the outcomes is also included.


2021 ◽  
Vol 151 ◽  
pp. 111264
Author(s):  
K. Kavitha ◽  
V. Vijayakumar ◽  
Anurag Shukla ◽  
Kottakkaran Sooppy Nisar ◽  
R. Udhayakumar

Sign in / Sign up

Export Citation Format

Share Document