Shape preserving widths of Sobolev-type classes ofs-monotone functions on a finite interval

2003 ◽  
Vol 133 (1) ◽  
pp. 239-268 ◽  
Author(s):  
V. N. Konovalov ◽  
D. Leviatan
2006 ◽  
Vol 140 (2) ◽  
pp. 101-126 ◽  
Author(s):  
J. Gilewicz ◽  
V.N. Konovalov ◽  
D. Leviatan

2007 ◽  
Vol 27 (2) ◽  
pp. 211-236 ◽  
Author(s):  
V. N. Konovalov ◽  
D. Leviatan

2001 ◽  
Vol 113 (2) ◽  
pp. 266-297 ◽  
Author(s):  
V.N Konovalov ◽  
D Leviatan

2008 ◽  
Vol 51 (2) ◽  
pp. 236-248
Author(s):  
Victor N. Konovalov ◽  
Kirill A. Kopotun

AbstractLet Bp be the unit ball in 𝕃p, 0 < p < 1, and let , s ∈ ℕ, be the set of all s-monotone functions on a finite interval I, i.e., consists of all functions x : I ⟼ ℝ such that the divided differences [x; t0, … , ts] of order s are nonnegative for all choices of (s + 1) distinct points t0, … , ts ∈ I. For the classes Bp := ∩ Bp, we obtain exact orders of Kolmogorov, linear and pseudo-dimensional widths in the spaces , 0 < q < p < 1:


1997 ◽  
Vol 38 (3) ◽  
pp. 567-583 ◽  
Author(s):  
Yu. G. Reshetnyak

Author(s):  
M. U. Kalmykov ◽  
S. P. Sidorov

We will estimate the upper and the lower bounds of the integral∫01Ω(t)dμ(t), whereμruns over all discrete measures, positive on some cones of generalized convex functions, and satisfying certain moment conditions with respect to a given Chebyshev system. Then we apply these estimations to find the error of optimal shape-preserving interpolation.


2005 ◽  
Vol 35 (2) ◽  
pp. 445-478 ◽  
Author(s):  
Z. Ditzian ◽  
V.N. Konovalov ◽  
D. Leviatan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document