scholarly journals Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron

2018 ◽  
Vol 223 (7) ◽  
pp. 3383-3410 ◽  
Author(s):  
Bas-Jan Zandt ◽  
Margaret Lin Veruki ◽  
Espen Hartveit
2010 ◽  
Vol 103 (3) ◽  
pp. 1456-1466 ◽  
Author(s):  
Margaret Lin Veruki ◽  
Leif Oltedal ◽  
Espen Hartveit

AII amacrine cells in the mammalian retina are connected via electrical synapses to on-cone bipolar cells and to other AII amacrine cells. To understand synaptic integration in these interneurons, we need information about the junctional conductance ( gj), the membrane resistance ( rm), the membrane capacitance ( Cm), and the cytoplasmic resistivity ( Ri). Due to the extensive electrical coupling, it is difficult to obtain estimates of rm, as well as the relative contribution of the junctional and nonjunctional conductances to the total input resistance of an AII amacrine cell. Here we used dual voltage-clamp recording of pairs of electrically coupled AII amacrine cells in an in vitro slice preparation from rat retina and applied meclofenamic acid (MFA) to block the electrical coupling and isolate single AII amacrines electrically. In the control condition, the input resistance ( Rin) was ∼620 MΩ and the apparent rm was ∼760 MΩ. After block of electrical coupling, determined by estimating gj in the dual recordings, Rin and rm were ∼4,400 MΩ, suggesting that the nongap junctional conductance of an AII amacrine cell is ∼16% of the total input conductance. Control experiments with nucleated patches from AII amacrine cells suggested that MFA had no effect on the nongap junctional membrane of these cells. From morphological reconstructions of AII amacrine cells filled with biocytin, we obtained a surface area of ∼900 μm2 which, with a standard value for Cm of 0.01 pF/μm2, corresponds to an average capacitance of ∼9 pF and a specific membrane resistance of ∼41 kΩ cm2. Together with information concerning synaptic connectivity, these data will be important for developing realistic compartmental models of the network of AII amacrine cells.


2014 ◽  
Vol 127 (6) ◽  
pp. 1190-1202 ◽  
Author(s):  
A. Meyer ◽  
G. Hilgen ◽  
B. Dorgau ◽  
E. M. Sammler ◽  
R. Weiler ◽  
...  

2009 ◽  
Vol 101 (5) ◽  
pp. 2339-2347 ◽  
Author(s):  
Margaret Lin Veruki ◽  
Espen Hartveit

Gap junction channels constitute specialized intercellular contacts that can serve as electrical synapses. In the rod pathway of the retina, electrical synapses between AII amacrine cells express connexin 36 (Cx36) and electrical synapses between AII amacrines and on-cone bipolar cells express Cx36 on the amacrine side and Cx36 or Cx45 on the bipolar side. For physiological investigations of the properties and functions of these electrical synapses, it is highly desirable to have access to potent pharmacological blockers with selective and reversible action. Here we use dual whole cell voltage-clamp recordings of pairs of AII amacrine cells and pairs of AII amacrine and on-cone bipolar cells in rat retinal slices to directly measure the junctional conductance ( Gj) between electrically coupled cells and to study the effect of the drug meclofenamic acid (MFA) on Gj. Consistent with previous tracer coupling studies, we found that MFA reversibly blocked the electrical synapse currents in a concentration-dependent manner, with complete block at 100 μM. Whereas MFA evoked a detectable decrease in Gj within minutes of application, the time to complete block of Gj was considerably longer, typically 20–40 min. After washout, Gj recovered to 20–90% of the control level, but the time to maximum recovery was typically >1 h. These results suggest that MFA can be a useful drug to investigate the physiological functions of electrical synapses in the rod pathway, but that the slow kinetics of block and reversal might compromise interpretation of the results and that explicit monitoring of Gj is desirable.


2013 ◽  
Vol 14 (S1) ◽  
Author(s):  
Hermann Riecke ◽  
Hannah Choi ◽  
Mark S Cembrowski ◽  
William L Kath ◽  
Joshua H Singer

2018 ◽  
Vol 28 (17) ◽  
pp. 2739-2751.e3 ◽  
Author(s):  
Cole W. Graydon ◽  
Evan E. Lieberman ◽  
Nao Rho ◽  
Kevin L. Briggman ◽  
Joshua H. Singer ◽  
...  

2004 ◽  
Vol 315 (3) ◽  
pp. 407-412 ◽  
Author(s):  
Sung-Jin Park ◽  
Eun-Jin Lim ◽  
Su-Ja Oh ◽  
Jin-Woong Chung ◽  
Dennis W. Rickman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document