amacrine cell
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 26)

H-INDEX

45
(FIVE YEARS 3)

Development ◽  
2021 ◽  
Author(s):  
Huanqing Zhang ◽  
Pei Zhuang ◽  
Ryan M. Welchko ◽  
Manhong Dai ◽  
Fan Meng ◽  
...  

The mammalian retina contains a complex mixture of different types of neurons. We find that microRNA miR-216b is preferentially expressed in postmitotic retinal amacrine cells in the mouse retina, and expression of miR-216a/b and miR-217 in retina depend in part on Ptf1a, a transcription factor required for amacrine cell differentiation. Surprisingly, ectopic expression of miR-216b directed the formation of additional amacrine cells and reduced bipolar neurons in the developing retina. We identify the Foxn3 mRNA as a retinal target of miR-216b by Argonaute PAR-CLIP and reporter analysis. Inhibition of Foxn3, a transcription factor, in the postnatal developing retina by RNAi increased the formation of amacrine cells and reduced bipolar cell formation. Foxn3 disruption by CRISPR in embryonic retinal explants also increased amacrine cell formation, while Foxn3 overexpression inhibited amacrine cell formation prior to Ptf1a expression. Co-expression of Foxn3 partially reversed the effects of ectopic miR-216b on retinal cell formation. Our results identify Foxn3 as a novel regulator of interneuron formation in the developing retina and suggest that miR-216b likely regulates Foxn3 and other genes in amacrine cells.


2021 ◽  
Author(s):  
Yeon Jin Kim ◽  
Beth Peterson ◽  
Joanna Crook ◽  
Hannah Joo ◽  
Jiajia Wu ◽  
...  

Abstract From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process1,2. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex3,4, but has not been found in the retina, despite significant effort5,6. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF poly-axonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we found unexpectedly that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a new door to investigation of a novel circuitry that computes motion direction in the primate visual system.


2021 ◽  
Vol 15 ◽  
Author(s):  
Joseph Pottackal ◽  
Joshua H. Singer ◽  
Jonathan B. Demb

A presynaptic neuron can increase its computational capacity by transmitting functionally distinct signals to each of its postsynaptic cell types. To determine whether such computational specialization occurs over fine spatial scales within a neurite arbor, we investigated computation at output synapses of the starburst amacrine cell (SAC), a critical component of the classical direction-selective (DS) circuit in the retina. The SAC is a non-spiking interneuron that co-releases GABA and acetylcholine and forms closely spaced (<5 μm) inhibitory synapses onto two postsynaptic cell types: DS ganglion cells (DSGCs) and neighboring SACs. During dynamic optogenetic stimulation of SACs in mouse retina, whole-cell recordings of inhibitory postsynaptic currents revealed that GABAergic synapses onto DSGCs exhibit stronger low-pass filtering than those onto neighboring SACs. Computational analyses suggest that this filtering difference can be explained primarily by presynaptic properties, rather than those of the postsynaptic cells per se. Consistent with functionally diverse SAC presynapses, blockade of N-type voltage-gated calcium channels abolished GABAergic currents in SACs but only moderately reduced GABAergic and cholinergic currents in DSGCs. These results jointly demonstrate how specialization of synaptic outputs could enhance parallel processing in a compact interneuron over fine spatial scales. Moreover, the distinct transmission kinetics of GABAergic SAC synapses are poised to support the functional diversity of inhibition within DS circuitry.


2021 ◽  
Vol 38 ◽  
Author(s):  
Xiwu Zhao ◽  
Kwoon Y. Wong

Abstract Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only anterogradely to drive behavioral responses, but also retrogradely to some amacrine interneurons to modulate retinal physiology. We previously found that all displaced amacrine cells with spiking, tonic excitatory photoresponses receive gap-junction input from ipRGCs, but the connectivity patterns and functional roles of ipRGC-amacrine coupling remained largely unknown. Here, we injected PoPro1 fluorescent tracer into all six types of mouse ipRGCs to identify coupled amacrine cells, and analyzed the latter’s morphological and electrophysiological properties. We also examined how genetically disrupting ipRGC-amacrine coupling affected ipRGC photoresponses. Results showed that ipRGCs couple with not just ON- and ON/OFF-stratified amacrine cells in the ganglion-cell layer as previously reported, but also OFF-stratified amacrine cells in both ganglion-cell and inner nuclear layers. M1- and M3-type ipRGCs couple mainly with ON/OFF-stratified amacrine cells, whereas the other ipRGC types couple almost exclusively with ON-stratified ones. ipRGCs transmit melanopsin-based light responses to at least 93% of the coupled amacrine cells. Some of the ON-stratifying ipRGC-coupled amacrine cells exhibit transient hyperpolarizing light responses. We detected bidirectional electrical transmission between an ipRGC and a coupled amacrine cell, although transmission was asymmetric for this particular cell pair, favoring the ipRGC-to-amacrine direction. We also observed electrical transmission between two amacrine cells coupled to the same ipRGC. In both scenarios of coupling, the coupled cells often spiked synchronously. While ipRGC-amacrine coupling somewhat reduces the peak firing rates of ipRGCs’ intrinsic melanopsin-based photoresponses, it renders these responses more sustained and longer-lasting. In summary, ipRGCs’ gap junctional network involves more amacrine cell types and plays more roles than previously appreciated.


2020 ◽  
Vol 9 (12) ◽  
pp. 3978
Author(s):  
Andrea Passani ◽  
Chiara Posarelli ◽  
Angela Tindara Sframeli ◽  
Laura Perciballi ◽  
Marco Pellegrini ◽  
...  

Glaucoma is one of the principal causes of irreversible blindness worldwide. Yet, intraocular pressure (IOP) is the main modifiable risk factor for disease progression. In the never-ending challenge to develop new and effective drugs, several molecules have been tested as anti-glaucoma agents thanks to their pressure-lowering capabilities. Among these molecules, the cannabinoids have been investigated as possible anti-glaucoma drugs since the early 1970s. Cannabinoids are a large class of chemical compounds that exploit their effects by interaction with cannabinoid receptors 1 and 2. These receptors are widely expressed in the human retina where they may influence important functions such as photo-transduction, amacrine cell network maintenance, and IOP regulation. Therefore, in past years several studies have been conducted in order to assess the IOP lowering effects of cannabinoids. PRISMA guidelines have been used to perform a literature search on Pubmed and Scopus aiming to investigate the mechanism of IOP lowering effects and the potential benefits of orally administered, inhaled, topical, and intravenous cannabinoids in the treatment of glaucoma patients.


Cell Reports ◽  
2020 ◽  
Vol 33 (7) ◽  
pp. 108382
Author(s):  
Patrick C. Kerstein ◽  
Joseph Leffler ◽  
Benjamin Sivyer ◽  
W. Rowland Taylor ◽  
Kevin M. Wright

2020 ◽  
Vol 6 (47) ◽  
pp. eabc9920
Author(s):  
T. Kim ◽  
N. Shen ◽  
J.-C. Hsiang ◽  
K.P. Johnson ◽  
D. Kerschensteiner

Approaching predators cast expanding shadows (i.e., looming) that elicit innate defensive responses in most animals. Where looming is first detected and how critical parameters of predatory approaches are extracted are unclear. In mice, we identify a retinal interneuron (the VG3 amacrine cell) that responds robustly to looming, but not to related forms of motion. Looming-sensitive calcium transients are restricted to a specific layer of the VG3 dendrite arbor, which provides glutamatergic input to two ganglion cells (W3 and OFFα). These projection neurons combine shared excitation with dissimilar inhibition to signal approach onset and speed, respectively. Removal of VG3 amacrine cells reduces the excitation of W3 and OFFα ganglion cells and diminishes defensive responses of mice to looming without affecting other visual behaviors. Thus, the dendrites of a retinal interneuron detect visual threats, divergent circuits downstream extract critical threat parameters, and these retinal computations initiate an innate survival behavior.


2020 ◽  
Author(s):  
Huanqing Zhang ◽  
Pei Zhuang ◽  
Ryan M. Welchko ◽  
Manhong Dai ◽  
Fan Meng ◽  
...  

AbstractThe mammalian retina contains a complex mixture of different types of neurons. We find that the microRNA miR-216b is preferentially expressed in postmitotic retinal amacrine cells in the mouse retina, and expression of miR-216a/b and miR-217 in the retina depend in part on Ptf1a, a transcription factor required for amacrine cell differentiation. Surprisingly, ectopic expression of miR-216b, or the related miR-216a, can direct the formation of additional amacrine cells in the developing retina. In addition, we observe the loss of bipolar neurons in the retina after miR-216b expression. We identify the mRNA for the transcriptional regulator Foxn3 as a retinal target of miR-216b by Argonaute PAR-CLIP and reporter analysis. Inhibition of Foxn3 in the postnatal developing retina by RNAi also increases the formation of amacrine cells and reduces bipolar cell formation, while overexpression of Foxn3 inhibits amacrine cell formation prior to the expression of Ptf1a. Disruption of Foxn3 by CRISPR in embryonic retinal explants also reduces amacrine cell formation. Co-expression of Foxn3 can partially reverse the effects of ectopic miR-216b on retinal cell type formation. Our results identify Foxn3 as a novel regulator of interneuron formation in the developing retina and suggest that miR-216b likely regulates expression of Foxn3 and other genes in amacrine cells.


2020 ◽  
Author(s):  
Bojana Radojevic ◽  
Margarita Mauro-Herrera ◽  
Lea D. Bennett

AbstractRetinal organoids derived from inducible pluripotent stem cells were used to gain insight into the role of l-DOPA during human retinal development. Dopaminergic gene expression was indicated by assessing two dopamine receptors (DRD1 and DRD2), DOPA decarboxylase (DDC), and tyrosine hydroxylase (TH) via quantitative reverse transcription-polymerase chain reaction at various developmental stages. TH transcript levels started to express around day (D) 42, reached maximal expression ∼D63 and then decreased thereafter. At D29, proliferating retinal progenitors expressed DRD1, DRD2, and DDC at various levels of mRNA throughout the day. In the presence of l-DOPA, D29 retinal organoids expressed DRD1 but DRD2 mRNA expression was suppressed. Additionally, l-DOPA upregulated TH mRNA prior to dopaminergic amacrine cell (DAC) development. After the appearance of DACs, l-DOPA phase shifted expression of DRD2 and synchronized mRNA expression of DDC, DRD2, and TH. The present results suggest unique mechanisms for DA signaling at different stages of development in the human retina.


Author(s):  
Seema Banerjee ◽  
Qin Wang ◽  
Fuxin Zhao ◽  
George Tang ◽  
Chunghim So ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document