Brain Structure and Function
Latest Publications


TOTAL DOCUMENTS

2272
(FIVE YEARS 606)

H-INDEX

78
(FIVE YEARS 11)

Published By Springer-Verlag

1863-2661, 1863-2653

Author(s):  
Sho Tamai ◽  
Masashi Kinoshita ◽  
Riho Nakajima ◽  
Hirokazu Okita ◽  
Mitsutoshi Nakada

Author(s):  
Imre Kalló ◽  
Azar Omrani ◽  
Frank J. Meye ◽  
Han de Jong ◽  
Zsolt Liposits ◽  
...  

AbstractOrexin neurons are involved in homeostatic regulatory processes, including arousal and feeding, and provide a major input from the hypothalamus to the ventral tegmental area (VTA) of the midbrain. VTA neurons are a central hub processing reward and motivation and target the medial prefrontal cortex (mPFC) and the shell part of nucleus accumbens (NAcs). We investigated whether subpopulations of dopamine (DA) neurons in the VTA projecting either to the mPFC or the medial division of shell part of nucleus accumbens (mNAcs) receive differential input from orexin neurons and whether orexin exerts differential electrophysiological effects upon these cells. VTA neurons projecting to the mPFC or the mNAcs were traced retrogradely by Cav2-Cre virus and identified by expression of yellow fluorescent protein (YFP). Immunocytochemical analysis showed that a higher proportion of all orexin-innervated DA neurons projected to the mNAcs (34.5%) than to the mPFC (5.2%). Of all sampled VTA neurons projecting either to the mPFC or mNAcs, the dopaminergic (68.3 vs. 79.6%) and orexin-innervated DA neurons (68.9 vs. 64.4%) represented the major phenotype. Whole-cell current clamp recordings were obtained from fluorescently labeled neurons in slices during baseline periods and bath application of orexin A. Orexin similarly increased the firing rate of VTA dopamine neurons projecting to mNAcs (1.99 ± 0.61 Hz to 2.53 ± 0.72 Hz) and mPFC (0.40 ± 0.22 Hz to 1.45 ± 0.56 Hz). Thus, the hypothalamic orexin system targets mNAcs and to a lesser extent mPFC-projecting dopaminergic neurons of the VTA and exerts facilitatory effects on both clusters of dopamine neurons.


Author(s):  
Hehui Li ◽  
Rebecca A. Marks ◽  
Lanfang Liu ◽  
Xiaoxia Feng ◽  
Manli Zhang ◽  
...  

Author(s):  
A. Docampo-Seara ◽  
E. Candal ◽  
M. A. Rodríguez

AbstractDuring development of the olfactory bulb (OB), glial cells play key roles in axonal guiding/targeting, glomerular formation and synaptic plasticity. Studies in mammals have shown that radial glial cells and peripheral olfactory glia (olfactory ensheathing cells, OECs) are involved in the development of the OB. Most studies about the OB glia were carried out in mammals, but data are lacking in most non-mammalian vertebrates. In the present work, we studied the development of the OB glial system in the cartilaginous fish Scyliorhinus canicula (catshark) using antibodies against glial markers, such as glial fibrillary acidic protein (GFAP), brain lipid-binding protein (BLBP), and glutamine synthase (GS). These glial markers were expressed in cells with radial morphology lining the OB ventricle of embryos and this expression continues in ependymal cells (tanycytes) in early juveniles. Astrocyte-like cells were also observed in the granular layer and surrounding glomeruli. Numerous GS-positive cells were present in the primary olfactory pathway of embryos. In the developmental stages analysed, the olfactory nerve layer and the glomerular layer were the regions with higher GFAP, BLBP and GS immuno-reactivity. In addition, numerous BLBP-expressing cells (a marker of mammalian OECs) showing proliferative activity were present in the olfactory nerve layer. Our findings suggest that glial cells of peripheral and central origin coexist in the OB of catshark embryos and early juveniles. These results open the path for future studies about the differential roles of glial cells in the catshark OB during embryonic development and in adulthood.


Author(s):  
Xiao Li ◽  
Songyao Zhang ◽  
Xi Jiang ◽  
Shu Zhang ◽  
Junwei Han ◽  
...  

Author(s):  
Sophie Stenger ◽  
Sebastian Bludau ◽  
Hartmut Mohlberg ◽  
Katrin Amunts

AbstractBrain areas at the parahippocampal gyrus of the temporal–occipital transition region are involved in different functions including processing visual–spatial information and episodic memory. Results of neuroimaging experiments have revealed a differentiated functional parcellation of this region, but its microstructural correlates are less well understood. Here we provide probability maps of four new cytoarchitectonic areas, Ph1, Ph2, Ph3 and CoS1 at the parahippocampal gyrus and collateral sulcus. Areas have been identified based on an observer-independent mapping of serial, cell-body stained histological sections of ten human postmortem brains. They have been registered to two standard reference spaces, and superimposed to capture intersubject variability. The comparison of the maps with functional imaging data illustrates the different involvement of the new areas in a variety of functions. Maps are available as part of Julich-Brain atlas and can be used as anatomical references for future studies to better understand relationships between structure and function of the caudal parahippocampal cortex.


Sign in / Sign up

Export Citation Format

Share Document