horizontal cells
Recently Published Documents


TOTAL DOCUMENTS

915
(FIVE YEARS 30)

H-INDEX

68
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Christian Behrens ◽  
Shubhash Chandra Yadav ◽  
Maria M. Korympidou ◽  
Yue Zhang ◽  
Silke Haverkamp ◽  
...  

2021 ◽  
Author(s):  
Rana Amini ◽  
Raimund Schlüßler ◽  
Stephanie Möllmert ◽  
Archit Bhatnagar ◽  
Jochen Guck ◽  
...  

As neurons are often born at positions different than where they ultimately function, neuronal migration is key to ensure successful nervous system development. Radial migration during which neurons featuring unipolar and bipolar morphology, employ pre-existing processes or underlying cells for directional guidance, is the most well explored neuronal migration mode. However, how neurons that display multipolar morphology, without such processes, move through highly crowded tissue environments towards their final positions remains elusive. To understand this, we here investigated multipolar migration of horizontal cells in the zebrafish retina. We found that horizontal cells tailor their movements to the environmental spatial constraints of the crowded retina, by featuring several characteristics of amoeboid migration. These include cell and nucleus shape changes, and persistent rearward polarization of stable F-actin, which enable horizontal cells to successfully move through the crowded retina. Interference with the organization of the developing retina by changing nuclear properties or overall tissue architecture, hampers efficient horizontal cell migration and layer formation. Thus, cell-tissue interplay is crucial for efficient migration of horizontal cells in the retina. In view of high proportion of multipolar neurons, the here uncovered ameboid-like neuronal migration mode might also be crucial in other areas of the developing brain.


Author(s):  
Michael W. Country ◽  
Michael G. Jonz

Neurons of the retina require oxygen to survive. In hypoxia, neuronal ATP production is impaired, ATP-dependent ion pumping is reduced, transmembrane ion gradients are dysregulated, and [Ca2+]i increases enough to trigger excitotoxic cell death. Central neurons of the common goldfish (Carassius auratus) are hypoxia-tolerant, but little is known about how goldfish retinas withstand hypoxia. To study the cellular mechanisms of hypoxia tolerance, we isolated retinal interneurons (horizontal cells; HCs), and measured intracellular Ca2+ concentration ([Ca2+]i) with Fura-2. Goldfish HCs maintained [Ca2+]i throughout 1 h of hypoxia, whereas [Ca2+]i increased irreversibly in HCs of the hypoxia-sensitive rainbow trout (Oncorhynchus mykiss) with just 20 min of hypoxia. Our results suggest mitochondrial ATP-dependent K+ channels (mKATP) are necessary to stabilize [Ca2+]i throughout hypoxia. In goldfish HCs, [Ca2+]i increased when mKATP was blocked with glibenclamide or 5-HD, whereas an mKATP agonist (diazoxide) prevented [Ca2+]i from increasing in hypoxia in trout HCs. We showed that hypoxia protects goldfish HCs via mKATP channels. Glycolytic inhibition with 2-deoxyglucose increased [Ca2+]i, which was rescued by hypoxia in an mKATP-dependent manner. We found no evidence of plasmalemmal KATP channels in patch-clamp experiments. Instead, we confirmed the involvement of KATP in mitochondria with TMRE imaging, as hypoxia rapidly (<5 min) depolarized mitochondria in an mKATP-sensitive manner. We conclude that mKATP channels initiate a neuroprotective pathway in goldfish HCs to maintain [Ca2+]i and avoid excitotoxicity in hypoxia. This model provides novel insight into the cellular mechanisms of hypoxia tolerance in the retina.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alejandro Vila ◽  
Eyad Shihabeddin ◽  
Zhijing Zhang ◽  
Abirami Santhanam ◽  
Christophe P. Ribelayga ◽  
...  

Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.


2021 ◽  
pp. 1-23
Author(s):  
Gerburg Keilhoff ◽  
Maximilian Titze ◽  
Uwe Ebmeyer

Background: Stroke-related loss of vision is one of the residual impairments, restricting the quality of life. However, studies of the ocular manifestations of asphyxia cardiac arrest/resuscitation (ACA/R) have reported very heterogeneous results. Objective: We aimed to evaluate the ACA/R-induced degeneration pattern of the different retinal cell populations in rats using different immuno-histological stainings. Methods: The staining pattern of toluidine blue and the ganglion cell markers β-III-tubulin and NeuN; the calcium-binding protein parvalbumin, indicating ganglion, amacrine, and horizontal cells; calretinin D28k, indicating ganglion and amacrine cells; calbindin, indicating horizontal cells; Chx 10, indicating cone bipolar cells; PKCα, indicating ON-type rod bipolar cells; arrestin, indicating cones; and rhodopsin, a marker of rods, as well as the glial cell markers GFAP (indicating astroglia and Müller cells) and IBA1 (indicating microglia), were evaluated after survival times of 7 and 21 days in an ACA/R rat model. Moreover, quantitative morphological analysis of the optic nerve was performed. The ACA/R specimens were compared with those from sham-operated and completely naïve rats. Results: ACA/R-induced effects were: (i) a significant reduction of retinal thickness after long-term survival; (ii) ganglion cell degeneration, including their fiber network in the inner plexiform layer; (iii) degeneration of amacrine and cone bipolar cells; (iv) degeneration of cone photoreceptors; (v) enhanced resistance to ACA/R by rod photoreceptors, ON-type rod bipolar and horizontal cells, possibly caused by the strong upregulation of the calcium-binding proteins calretinin, parvalbumin, and calbindin, counteracting the detrimental calcium overload; (vi) significant activation of Müller cells as further element of retinal anti-stress self-defense mechanisms; and (vii) morphological alterations of the optic nerve in form of deformed fibers. Conclusions: Regardless of the many defects, the surviving neuronal structures seemed to be able to maintain retinal functionality, which can be additionally improved by regenerative processes true to the “use it or lose it” dogma.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lena Nemitz ◽  
Karin Dedek ◽  
Ulrike Janssen-Bienhold

The first synapse of the visual pathway is formed by photoreceptors, horizontal cells and bipolar cells. While ON bipolar cells invaginate into the photoreceptor terminal and form synaptic triads together with invaginating horizontal cell processes, OFF bipolar cells make flat contacts at the base of the terminal. When horizontal cells are ablated during retina development, no invaginating synapses are formed in rod photoreceptors. However, how cone photoreceptors and their synaptic connections with bipolar cells react to this insult, is unclear so far. To answer this question, we specifically ablated horizontal cells from the developing mouse retina. Following ablation around postnatal day 4 (P4)/P5, cones initially exhibited a normal morphology and formed flat contacts with OFF bipolar cells, but only few invaginating contacts with ON bipolar cells. From P15 on, synaptic remodeling became obvious with clustering of cone terminals and mislocalized cone somata in the OPL. Adult cones (P56) finally displayed highly branched axons with numerous terminals which contained ribbons and vesicular glutamate transporters. Furthermore, type 3a, 3b, and 4 OFF bipolar cell dendrites sprouted into the outer nuclear layer and even expressed glutamate receptors at the base of newly formed cone terminals. These results indicate that cones may be able to form new synapses with OFF bipolar cells in adult mice. In contrast, cone terminals lost their invaginating contacts with ON bipolar cells, highlighting the importance of horizontal cells for synapse maintenance. Taken together, our data demonstrate that early postnatal horizontal cell ablation leads to differential remodeling in the cone pathway: whereas synapses between cones and ON bipolar cells were lost, new putative synapses were established between cones and OFF bipolar cells. These results suggest that synapse formation and maintenance are regulated very differently between flat and invaginating contacts at cone terminals.


Author(s):  
Estie Schick ◽  
Kevin C. Gonzalez ◽  
Pooja Dutta ◽  
Kazi Hossain ◽  
Miruna G. Ghinia Tegla ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Estie Schick ◽  
Kevin C. Gonzalez ◽  
Pooja Dutta ◽  
Kazi Hossain ◽  
Miruna G. Ghinia Tegla ◽  
...  

AbstractDuring retinal development, multipotent and restricted progenitor cells generate all of the neuronal cells of the retina. Among these are horizontal cells, which are interneurons that modulate the light-induced signal from photoreceptors. This study utilizes the identification of novel cis-regulatory elements as a method to examine the gene regulatory networks that direct the development of horizontal cells. Here we describe a screen for cis-regulatory elements, or enhancers, for the horizontal cell-associated genes PTF1A, ONECUT1 (OC1), TFAP2A (AP2A), and LHX1. The OC1ECR22 and Tfap2aACR5 elements were shown to be potential enhancers for OC1 and TFAP2A, respectively, and to be specifically active in developing horizontal cells. The OC1ECR22 element is activated by PTF1A and RBPJ, which translates to regulation of OC1 expression and suggests that PTF1A is a direct activator of OC1 expression in developing horizontal cells. The region within the Tfap2aACR5 element that is responsible for its activation was determined to be a 100 bp sequence named Motif 4. Both OC1ECR22 and Tfap2aACR5 are negatively regulated by the nuclear receptors THRB and RXRG, as is the expression of OC1 and AP2A, suggesting that nuclear receptors may have a role in the negative regulation of horizontal cell development.


Sign in / Sign up

Export Citation Format

Share Document