Low dose inhaled nitric oxide causing selective pulmonary vasodilation in child with idiopathic pulmonary hypertension

1994 ◽  
Vol 153 (9) ◽  
pp. 691-693 ◽  
Author(s):  
P. Radermacher ◽  
Spyros Rammos
1996 ◽  
Vol 271 (6) ◽  
pp. L981-L986 ◽  
Author(s):  
A. Holzmann ◽  
K. D. Bloch ◽  
L. S. Sanchez ◽  
G. Filippov ◽  
W. M. Zapol

Inhaled nitric oxide (iNO) causes selective pulmonary vasodilation and improves oxygenation in patients with the adult respiratory distress syndrome (ARDS). Approximately 30% of ARDS patients fail to respond to iNO. Because sepsis syndrome often accompanies a decreased response to iNO, we investigated NO responsiveness in isolated, perfused lungs from rats exposed to lipopolysaccharide (LPS). Eighteen hours after intraperitoneal injection of 0.5 mg/kg LPS, rat lungs were isolated, perfused, and preconstricted with U-46619. Ventilation with 0.4, 4, and 40 parts per million by volume NO vasodilated LPS-pretreated lungs 75, 47, and 42% less than control lungs (P < 0.01 value differs at each concentration). The diminished vasodilatory response to iNO was associated with decreased NO-stimulated guanosine 3',5'-cyclic monophosphate (cGMP) release into the perfusate. Soluble guanylate cyclase activity did not differ in lung extracts from LPS-pretreated and control rats. LPS increased pulmonary cGMP-phosphodiesterase (PDE) activity by 40%. The PDE-sensitive cGMP analogue 8-bromoguanosine 3',5'-cyclic monophosphate vasodilated lungs from LPS-pretreated rats less than lungs from control rats. In contrast, the PDE-insensitive 8-para-chlorophenylthioguanosine 3',5'-cyclic monophosphate vasodilated lungs equally from both groups. After LPS challenge, the rat pulmonary vasculature becomes hyporesponsive to iNO. Hyporesponsiveness to iNO appears partly attributable to increased pulmonary cGMP-PDE activity.


2016 ◽  
Vol 51 (4) ◽  
pp. 376-387
Author(s):  
Bodil Petersen ◽  
Thilo Busch ◽  
Katharina Noreikat ◽  
Lorenz Homeister ◽  
Ralf Regenthal ◽  
...  

Pulmonary arterial hypertension is a life-threatening disease with a poor prognosis. Oral treatment with vasodilators is often limited by systemic hypotension. Inhalation of vasodilators offers the opportunity for selective pulmonary vasodilation. Testing selective pulmonary vasodilation by inhaled nitric oxide or alternative substances in animal models requires an increased pulmonary vascular tone. The aim of this study was to identify animal models that are suitable for investigating selective pulmonary vasodilation. To do so, a haemodynamic stable pulmonary hypertension was initiated, with a 30 min duration deemed to be a sufficient time interval before and after a possible intervention. In anaesthetized and mechanically-ventilated Sprague–Dawley rats pulmonary hypertension was induced either by acute hypoxia due to reduction of the inspired oxygen fraction from 0.21 to 0.1 ( n = 6), a fixed infusion rate of the thromboxane analogue U46619 (240 ng/min; n = 6) or a monocrotaline injection (MCT; 60 mg/kg applied 23 days before the investigation; n = 7). The animals were instrumented to measure right ventricular and systemic arterial pressures. Acute hypoxia caused a short, and only transient, increase of pulmonary artery pressure as well as profound systemic hypotension which suggested haemodynamic instability. U46619 infusion induced variable changes in the pulmonary and systemic vascular tone without sufficient stabilization within 30 min. MCT provoked sustained pulmonary hypertension with normal systemic pressure values and inhalation of nitric oxide caused selective pulmonary vasodilation. In conclusion, out of the three examined rat animal models only MCT-induced pulmonary hypertension is a solid and reliable model for investigating selective pulmonary vasodilation.


1997 ◽  
Vol 80 (5) ◽  
pp. 662-664 ◽  
Author(s):  
Fukiko Ichida ◽  
Kei-ichiro Uese ◽  
Shin-ichi Tsubata ◽  
Ikuo Hashimoto ◽  
Yuji Hamamichi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document