A mutation detected in DNA polymerase δ cDNA from Novikoff hepatoma cells correlates with abnormal catalytic properties of the enzyme

1999 ◽  
Vol 125 (11) ◽  
pp. 598-608 ◽  
Author(s):  
Odilia Popanda ◽  
Thomas Flohr ◽  
Gabriele Fox ◽  
Heinz Walter Thielmann
2021 ◽  
Vol 37 (5) ◽  
pp. 476-487 ◽  
Author(s):  
Jeannette Fuchs ◽  
Anais Cheblal ◽  
Susan M. Gasser

2013 ◽  
Vol 41 (22) ◽  
pp. 10323-10333 ◽  
Author(s):  
Justin D. Lormand ◽  
Noah Buncher ◽  
Connor T. Murphy ◽  
Parminder Kaur ◽  
Marietta Y. Lee ◽  
...  

Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 511-519 ◽  
Author(s):  
Robert J Kokoska ◽  
Lela Stefanovic ◽  
Andrew B Buermeyer ◽  
R Michael Liskay ◽  
Thomas D Petes

AbstractThe POL30 gene of the yeast Saccharomyces cerevisiae encodes the proliferating cell nuclear antigen (PCNA), a protein required for processive DNA synthesis by DNA polymerase δ and ϵ. We examined the effects of the pol30-52 mutation on the stability of microsatellite (1- to 8-bp repeat units) and minisatellite (20-bp repeat units) DNA sequences. It had previously been shown that this mutation destabilizes dinucleotide repeats 150-fold and that this effect is primarily due to defects in DNA mismatch repair. From our analysis of the effects of pol30-52 on classes of repetitive DNA with longer repeat unit lengths, we conclude that this mutation may also elevate the rate of DNA polymerase slippage. The effect of pol30-52 on tracts of repetitive DNA with large repeat unit lengths was similar, but not identical, to that observed previously for pol3-t, a temperature-sensitive mutation affecting DNA polymerase δ. Strains with both pol30-52 and pol3-t mutations grew extremely slowly and had minisatellite mutation rates considerably greater than those observed in either single mutant strain.


Sign in / Sign up

Export Citation Format

Share Document