Effect of infrahepatic inferior vena cava partial clamping on central venous pressure and intraoperative blood loss during laparoscopic hepatectomy

Author(s):  
Lin-Kang Xiao ◽  
Pan Huang ◽  
Kun Wu ◽  
Ji-Feng Xiang ◽  
Xiang Fu ◽  
...  
2011 ◽  
Vol 253 (6) ◽  
pp. 1102-1110 ◽  
Author(s):  
Nuh N. Rahbari ◽  
Moritz Koch ◽  
Johannes B. Zimmermann ◽  
Heike Elbers ◽  
Thomas Bruckner ◽  
...  

2019 ◽  
Vol 6 (5) ◽  
pp. 1947
Author(s):  
Mohd Kashif Ali ◽  
Eeman Naim

Background: Ultrasound guided fluid assessment in management of septic shock has come up as an adjunct to the current gold standard Central Venous Pressure monitoring. This study was designed to observe the respiro-phasic variation of IVC diameter (RV-IVCD) in invasively mechanically ventilated and spontaneously breathing paediatric patients of fluid refractory septic shock.Methods: This was a prospective observational study done at Paediatric intensive Care Unit (PICU) in Paediatric ward of Jawaharlal Nehru Medical College and Hospital (JNMCH) from February 2016 to June 2017. 107 consecutive patients between 1 year to 16 years age who were in shock despite 40ml/kg of fluid administration were included. Inferior Vena Cava (IVC) diameters were measured at end-expiration and end inspiration and the IVC collapsibility index was calculated. Simultaneously Central Venous Pressure (CVP) was recorded. Both values were obtained in ventilated and non-ventilated patients. Data was analysed to determine to look for the profile of RV-IVCD and CVP in ventilated and non-ventilated cases.Results: Out of 107 patients, 91 were on invasive mechanical ventilation and 16 patients were spontaneously breathing. There was a strong negative correlation between central venous pressure (CVP) and inferior vena cava collapsibility (RV-IVCD) in both spontaneously breathing (-0.810) and mechanically ventilated patients (-0.700). Negative correlation was significant in both study groups in CVP <8 mmHg and only in spontaneously breathing patients in CVP 8-12 mmHg range. IVC collapsibility showed a decreasing trend with rising CVP in both spontaneously breathing and mechanically ventilated patients.Conclusion: Ultrasonography guided IVCCI appears to be a valuable index in assessing fluid status in both spontaneously breathing and mechanically ventilated septic shock patients. However, more data is required from the paediatric population so as to define it as standard of practice.


2020 ◽  
Vol 5 (1) ◽  

Fluid therapy is an essential component part management of critically ill patients. Proper estimation of the amount of needed fluids is of great importance due to the well-established adverse effects of marked negative and positive fluids balance. Central venous pressure has been widely used by ICU physicians for volume status assessment. Several methods have been postulated for volume status assessment, among which is the inferior vena cava collapsibility index. As the inferior vena cava is a thin-walled capacitance vessel that adjusts to the body’s volume status by changing its diameter depending on the total body fluid volume. Giving the fact that bed-side ultrasonographic measurement of inferior vena cava diameters is an available, non-invasive, reproducible and quiet easy-to-learn technique, it can provide a safe and quiet reliable replacement of central venous pressure measurement for assessment of volume status assessment. The aim of this study was to find statistical correlation between central venous pressure and caval index, as a step towards validating the above mentioned replacement. 86 critically ill patients from ICU population were enrolled. Simultaneous measurements of central venous pressure and inferior vena cava collapsibility index were observed and recorded on four sessions. Patients were also grouped based on their mode of ventilation and central venous pressure values in order to compare the strength of correlation between various populations. The results showed that Inferior vena cava collapsibility index has significant inverse correlation with CVP value (r= -85, p value ˂0.001 at 95% CI) and it better correlated with mean arterial blood pressure and lactate clearance as compared to central venous pressure. However it correlated better with CVP in spontaneously breathing patients (r= -0.86, p value ˂0.001) than in mechanically ventilated patients (r= -0.84, p value ˂0.001). Inferior vena cava collapsibility index has shown to correlate better with CVP value in lower values (˂ 10 cmH2O) (r= -0.8, p value ˂0.001) than in higher values (≥ 10 cmH2O) (r= -0.6, p value ˂0.001). In addition, an inferior vena caval collapsibility index cut-off value of 29% was shown to discriminate between CVP values ˂10 cmH2O and values ≥10 cmH2O with high Sensitivity (88.6%) and specificity (80.4%). In conclusion, inferior vena cava collapsibility index has a strong inverse relationship with central venous pressure which is more pronounced at low central venous pressure values. Point-of-care ultrasonographically-measured inferior vena cava collapsibility index is very likely to be a good alternative to central venous pressure measurement with a high degree of precision and reproducibility. However, Wide scale studies are needed to validate its use in different patient populations.


Sign in / Sign up

Export Citation Format

Share Document