scholarly journals Positive energy static solutions for the Chern–Simons–Schrödinger system under a large-distance fall-off requirement on the gauge potentials

Author(s):  
Antonio Azzollini ◽  
Alessio Pomponio

AbstractIn this paper we prove the existence of a positive energy static solution for the Chern–Simons–Schrödinger system under a large-distance fall-off requirement on the gauge potentials. We are also interested in existence of ground state solutions.

Author(s):  
Jing Chen ◽  
Yiqing Li

In this paper, we dedicate to studying the following semilinear Schrödinger system equation*-Δu+V1(x)u=Fu(x,u,v)amp;mboxin~RN,r-Δv+V2(x)v=Fv(x,u,v)amp;mboxin~RN,ru,v∈H1(RN),endequation* where the potential Vi are periodic in x,i=1,2, the nonlinearity F is allowed super-quadratic at some x ∈ R N and asymptotically quadratic at the other x ∈ R N . Under a local super-quadratic condition of F, an approximation argument and variational method are used to prove the existence of Nehari–Pankov type ground state solutions and the least energy solutions.


2019 ◽  
Vol 150 (4) ◽  
pp. 1915-1936 ◽  
Author(s):  
Pietro d'Avenia ◽  
Alessio Pomponio ◽  
Tatsuya Watanabe

AbstractWe are interested in standing waves of a modified Schrödinger equation coupled with the Chern–Simons gauge theory. By applying a constraint minimization of Nehari-Pohozaev type, we prove the existence of radial ground state solutions. We also investigate the nonexistence for nontrivial solutions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mohammad Ali Husaini ◽  
Chuangye Liu

<p style='text-indent:20px;'>In this paper, we study the following coupled nonlinear Schrödinger system of the form</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{\begin{array}{l} -\Delta u_i-\kappa_iu_i = g_i(u_i)+\lambda\partial_iF(\vec{u}), \\ \vec{u} = (u_1,u_2,\cdots,u_m), u_i\in D_0^{1,2}(\Omega), \end{array}\right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for <inline-formula><tex-math id="M1">\begin{document}$ m = 2,3 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ \Omega\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> is a bounded domain or <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ N\geq 3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ F(t_1,t_2\cdots,t_m)\in C^1(\mathbb{R}^m,\mathbb{R}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ \kappa_i\in\mathbb{R} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ g_i\in C(\mathbb{R}) \ (i = 1,2,\cdots,m) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \lambda&gt;0 $\end{document}</tex-math></inline-formula> is large enough. In this work we mainly focus on the existence of fully nontrivial ground-state solutions and synchronized ground-state solutions under certain conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document