scholarly journals Synchronized and ground-state solutions to a coupled Schrödinger system

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mohammad Ali Husaini ◽  
Chuangye Liu

<p style='text-indent:20px;'>In this paper, we study the following coupled nonlinear Schrödinger system of the form</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{\begin{array}{l} -\Delta u_i-\kappa_iu_i = g_i(u_i)+\lambda\partial_iF(\vec{u}), \\ \vec{u} = (u_1,u_2,\cdots,u_m), u_i\in D_0^{1,2}(\Omega), \end{array}\right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for <inline-formula><tex-math id="M1">\begin{document}$ m = 2,3 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ \Omega\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> is a bounded domain or <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ N\geq 3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ F(t_1,t_2\cdots,t_m)\in C^1(\mathbb{R}^m,\mathbb{R}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ \kappa_i\in\mathbb{R} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ g_i\in C(\mathbb{R}) \ (i = 1,2,\cdots,m) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \lambda&gt;0 $\end{document}</tex-math></inline-formula> is large enough. In this work we mainly focus on the existence of fully nontrivial ground-state solutions and synchronized ground-state solutions under certain conditions.</p>

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Juan Carlos Muñoz Grajales

We show the existence of waveforms of finite-energy (vector solitons) for a coupled nonlinear Schrödinger system with inhomogeneous coefficients. Furthermore, some of these solutions are approximated using a Newton-type iteration, combined with a collocation-spectral strategy to discretize the corresponding soliton equations. Some numerical simulations concerned with analysis of a collision of two oncoming vector solitons of the system are also performed.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Min Liu ◽  
Jiu Liu

In this paper, we study the following autonomous nonlinear Schrödinger system (discussed in the paper), where λ , μ , and ν are positive parameters; 2 ∗ = 2 N / N − 2 is the critical Sobolev exponent; and f satisfies general subcritical growth conditions. With the help of the Pohožaev manifold, a ground state solution is obtained.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kazuhiro Kurata ◽  
Yuki Osada

<p style='text-indent:20px;'>In this paper, we consider the asymptotic behavior of the ground state and its energy for the nonlinear Schrödinger system with three wave interaction on the parameter <inline-formula><tex-math id="M1">\begin{document}$ \gamma $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M2">\begin{document}$ \gamma \to \infty $\end{document}</tex-math></inline-formula>. In addition we prove the existence of the positive threshold <inline-formula><tex-math id="M3">\begin{document}$ \gamma^* $\end{document}</tex-math></inline-formula> such that the ground state is a scalar solution for <inline-formula><tex-math id="M4">\begin{document}$ 0 \le \gamma &lt; \gamma^* $\end{document}</tex-math></inline-formula> and is a vector solution for <inline-formula><tex-math id="M5">\begin{document}$ \gamma &gt; \gamma^* $\end{document}</tex-math></inline-formula>.</p>


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Filipe Oliveira ◽  
Hugo Tavares

AbstractWe study the existence of ground states for the coupled Schrödinger system


2021 ◽  
Vol 19 (1) ◽  
pp. 297-305
Author(s):  
Yuting Zhu ◽  
Chunfang Chen ◽  
Jianhua Chen ◽  
Chenggui Yuan

Abstract In this paper, we study the following generalized Kadomtsev-Petviashvili equation u t + u x x x + ( h ( u ) ) x = D x − 1 Δ y u , {u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where ( t , x , y ) ∈ R + × R × R N − 1 \left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1} , N ≥ 2 N\ge 2 , D x − 1 f ( x , y ) = ∫ − ∞ x f ( s , y ) d s {D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s , f t = ∂ f ∂ t {f}_{t}=\frac{\partial f}{\partial t} , f x = ∂ f ∂ x {f}_{x}=\frac{\partial f}{\partial x} and Δ y = ∑ i = 1 N − 1 ∂ 2 ∂ y i 2 {\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}} . We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in R N {{\mathbb{R}}}^{N} .


Sign in / Sign up

Export Citation Format

Share Document