Tectonically controlled sedimentation: impact on sediment supply and basin evolution of the Kashafrud Formation (Middle Jurassic, Kopeh-Dagh Basin, northeast Iran)

2014 ◽  
Vol 103 (8) ◽  
pp. 2233-2254 ◽  
Author(s):  
Mehrdad Sardar Abadi ◽  
Anne-Christine Da Silva ◽  
Abdolhossein Amini ◽  
Ali Akbar Aliabadi ◽  
Frédéric Boulvain ◽  
...  
2018 ◽  
Vol 469 (1) ◽  
pp. 305-340 ◽  
Author(s):  
R. M. C. H. Verreussel ◽  
R. Bouroullec ◽  
D. K. Munsterman ◽  
K. Dybkjær ◽  
C. R. Geel ◽  
...  

2020 ◽  
Author(s):  
Stéphane Bodin ◽  
Jan Danisch ◽  
Malte Mau ◽  
Francois-Nicolas Krencker ◽  
Alexis Nutz ◽  
...  

<p><span>Mesozoic sea-level fluctuations have been a matter of debate for several decades, especially the extend and origin of sea-level cycles that have a periodicity of about 1 Myr or less. The debate lies in the main driving mechanism for sequence development (global sea-level or sediment flux variations) as well as the reason behind water exchanges between the continents and the oceans (glacio- or aquifer-eustatism). In this study, we focus on the carbonate-dominated sedimentary record of the Bajocian (Middle Jurassic) in the Central High Atlas Basin of Morocco. Several aspects make this basin an appropriate location for discussing Middle Jurassic sea-level changes. Firstly, the outstanding exposures of the High Atlas Mountains, with continuous exposures for 10s of kilometres, allow to describe and track sedimentary packages and their bounding surfaces from proximal to distal settings. Moreover, a combination of ammonite and brachiopod biostratigraphy with carbon-isotopes chemostratigraphy allows to temporarily constrain their development, which permits to correlate and compare the Central High Atlas sedimentary record to other basins. Finally, due to high-subsidence rates, thick Bajocian sedimentary sequences have accumulated, minimizing condensation and hiatus that might prevail in other basins due to a lack of accommodation space creation. Two Bajocian long-term transgressive-regressive (T-R) packages are observed throughout the basin. They are modulated by several medium-term T-R packages, that have each an approximate duration of 1 Myr. These sequences can also be correlated on a basinwide scale. Combined with sedimentological and facies analyses, architectural evidence along proximal-to-distal transect illustrates that several of the medium-term sequences are characterized by the presence of a falling stage and lowstand systems tracts, demonstrating that medium-term T-R stacking patterns are not solely linked to fluctuation in sediment supply, but also to episodes of relative sea-level fall of at least 30m of amplitude. This is confirmed by backstripping analysis performed in a composite section from the center of the Basin. Comparison with Bajocian deposits from France and Scotland, where good biostratigraphic dating is also available, shows that similar contemporaneous sea-level fall can be observed, highlighting their potential global character. The two long-term Bajocian sequences are more difficult to correlate on a global scale, suggesting that they are rather primarily linked to fluctuation in regional sediment supply or dynamic topography processes. The exact cause of the Bajocian medium-term sea-level falls is currently unknown, but it is here interesting to note that a relatively cool globate climate has been postulated for the Middle Jurassic, suggesting that glacio-eustasy was their most likely driver.</span></p>


Author(s):  
Michael Larsen ◽  
Morten Bjerager ◽  
Tor Nedkvitne ◽  
Snorre Olaussen ◽  
Thomas Preuss

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Larsen, M., Bjerager, M., Nedkvitne, T., Olaussen, S., & Preuss, T. (2001). Pre-basaltic sediments (Aptian–Paleocene) of the Kangerlussuaq Basin, southern East Greenland. Geology of Greenland Survey Bulletin, 189, 99-106. https://doi.org/10.34194/ggub.v189.5163 _______________ The recent licensing round in the deep-water areas south-east of the Faeroe Islands has emphasised the continued interest of the oil industry in the frontier areas of the North Atlantic volcanic margins. The search for hydrocarbons is at present focused on the Cretaceous– Paleocene succession with the Paleocene deepwater play as the most promising (Lamers & Carmichael 1999). The exploration and evaluation of possible plays are almost solely based on seismic interpretation and limited log and core data from wells in the area west of the Shetlands. The Kangerlussuaq Basin in southern East Greenland (Fig. 1) provides, however, important information on basin evolution prior to and during continental break-up that finally led to active sea-floor spreading in the northern North Atlantic. In addition, palaeogeographic reconstructions locate the southern East Greenland margin only 50–100 km north-west of the present-day Faeroe Islands (Skogseid et al. 2000), suggesting the possibility of sediment supply to the offshore basins before the onset of rifting and sea-floor spreading. In this region the Lower Cretaceous – Palaeogene sedimentary succession reaches almost 1 km in thickness and comprises sediments of the Kangerdlugssuaq Group and the siliciclastic lower part of the otherwise basaltic Blosseville Group (Fig. 2). Note that the Kangerdlugssuaq Group was defined when the fjord Kangerlussuaq was known as ‘Kangerdlugssuaq’. Based on field work by the Geological Survey of Denmark and Greenland (GEUS) during summer 1995 (Larsen et al. 1996), the sedimentology, sequence stratigraphy and basin evolution of the Kangerlussuaq Basin were interpreted and compared with the deep-water offshore areas of the North Atlantic (Larsen et al. 1999a, b).


2016 ◽  
Vol 5 (3) ◽  
pp. 205-220 ◽  
Author(s):  
Meng Li ◽  
Long-Yi Shao ◽  
Lei Liu ◽  
Jing Lu ◽  
Baruch Spiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document