sediment supply
Recently Published Documents


TOTAL DOCUMENTS

1261
(FIVE YEARS 490)

H-INDEX

61
(FIVE YEARS 9)

2022 ◽  
Vol 10 (1) ◽  
pp. 108
Author(s):  
Cuiping Kuang ◽  
Jiadong Fan ◽  
Zhichao Dong ◽  
Qingping Zou ◽  
Xin Cong ◽  
...  

A tidal lagoon system has multiple environmental, societal, and economic implications. To investigate the mechanism of influence of the geomorphological evolution of a tidal lagoon, the effect of critical erosion shear stress, critical deposition shear stress, sediment settling velocity, and initial bed elevation were assessed by applying the MIKE hydro- and morpho-dynamic model to a typical tidal lagoon, Qilihai Lagoon. According to the simulation results, without sediment supply, an increase of critical erosion, deposition shear stress, or sediment settling velocity gives rise to tidal networks with a stable terrain. Such an equilibrium state can be defined as when the change of net erosion has little variation, which can be achieved due to counter actions between the erosion and deposition effect. Moreover, the influence of the initial bed elevation depends on the lowest tidal level. When the initial bed elevation is below the lowest tidal level, the tidal networks tend to be fully developed. A Spearman correlation analysis indicated that the geomorphological evolution is more sensitive to critical erosion or deposition shear stress than sediment settling velocity and initial bed elevation. Exponential sea level rise contributes to more intensive erosion than the linear or the parabolic sea level rise in the long-term evolution of a tidal lagoon.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 232
Author(s):  
Yeon-Joong Kim ◽  
Jong-Sung Yoon

The severe coastal erosions are being accelerated along the east coast of South Korea owing to the intermittent erosions and depositions caused by the imbalance between the effective sediment volume supplied from coasts and rivers and the sediment transport rate. Consequently, many studies are being conducted to develop coastal-erosion reduction measures. To accurately determine the cause of coastal erosion, the causes of the erosion and deposition should be accurately diagnosed, and a comprehensive evaluation system for the sediment transport mechanism in the watershed and sea while considering regional characteristics is required. In particular, realizing the evaluation of the effective sediment volume that flows from the river to the sea through observations is a highly challenging task, and various research and developments are required to realize it, as it is still in the basic research stage. The purpose of this study was to systematically analyze the comprehensive sediment budget for coastal areas. First, an analytical system was developed. Then, a shoreline model was constructed by considering the size of the mixed particles. The parameters required for developing the model were determined using the observation data to improve the shoreline model. A sediment runoff model was applied to evaluate the effective sediment volume supplied from the river to the sea, and the applicability of this model was evaluated by comparing it with the sediment supply volume according to the soil and water assessment tool model. The representative wave and the input parameters of the model were set using the observation data of several years. It was found that the prediction performance of the shoreline change model improved when the effective sediment volume was considered, and the particles of the sediment on the shore were assumed to comprise multiple sizes. In particular, the prediction performance improved when the balance of the sediment budget was adjusted by applying a groin having a structurally similar performance to take into consideration the geographic features of the Deokbongsan (island) in front of the river mouth bar. The model demonstrated a good performance in reproducing long-term shoreline changes when the characteristics of the sea waves and the effective sediment volume were considered.


2022 ◽  
Author(s):  
Mark Hennen ◽  
Adrian Chappell ◽  
Nicholas Webb ◽  
Kerstin Schepanski ◽  
Matthew Baddock ◽  
...  

Abstract. Measurements of dust in the atmosphere have long been used to calibrate dust emission models. However, there is growing recognition that atmospheric dust confounds the magnitude and frequency of emission from dust sources and hides potential weaknesses in dust emission model formulation. In the satellite era, dichotomous (presence = 1 or absence = 0) observations of dust emission point sources (DPS) provide a valuable inventory of regional dust emission. We used these DPS data to develop an open and transparent framework to routinely evaluate dust emission model (development) performance using coincidence of simulated and observed dust emission (or lack of emission). To illustrate the utility of this framework, we evaluated the recently developed albedo-based dust emission model (AEM) which included the traditional entrainment threshold (u*ts) at the grain scale, fixed over space and static over time, with sediment supply infinite everywhere. For comparison with the dichotomous DPS data, we reduced the AEM simulations to its frequency of occurrence in which soil surface wind friction velocity (us*) exceeds the u*ts, P(us* > u*ts). We used a global collation of nine DPS datasets from established studies to describe the spatio-temporal variation of dust emission frequency. A total of 37,352 unique DPS locations were aggregated into 1,945 1° grid boxes to harmonise data across the studies which identified a total of 59,688 dust emissions. The DPS data alone revealed that dust emission does not usually recur at the same location, are rare (1.8 %) even in North Africa and the Middle East, indicative of extreme, large wind speed events. The AEM over-estimated the occurrence of dust emission by between 1 and 2 orders of magnitude. More diagnostically, the AEM simulations coincided with dichotomous observations ~71 % of the time but simulated dust emission ~27 % of the time when no dust emission was observed. Our analysis indicates that u*ts was typically too small, needed to vary over space and time, and at the grain-scale u*ts is incompatible with the us* scale (MODIS 500 m). During observed dust emission, us* was too small because wind speeds were too small and/or the wind speed scale (ERA5; 11 km) is incompatible with the us* scale. The absence of any limit to sediment supply caused the AEM to simulate dust emission whenever P (us* > u*ts), producing many false positives when and where wind speeds were frequently large. Dust emission model scaling needs to be reconciled and new parameterisations are required for u*ts and to restrict sediment supply varying over space and time. Whilst u*ts remains poorly constrained and unrealistic assumptions persist about sediment supply and availability, the DPS data provide a basis for the calibration of dust emission models for operational use. As dust emission models develop, these DPS data provide a consistent, reproducible, and valid framework for their routine evaluation and potential model optimisation. This work emphasises the growing recognition that dust emission models should not be evaluated against atmospheric dust.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Bébhinn Anders ◽  
Shane Tyrrell ◽  
David Chew ◽  
Gary O’Sullivan ◽  
Chris Mark ◽  
...  

Sediment delivery and supply are explicitly controlled by variations in broad-scale processes such as climate, tectonics and eustasy. These in turn influence fluvial processes and hinterland evolution. A bespoke multi-proxy approach (integrating apatite and zircon U-Pb geochronology, trace elements in apatite, and Pb-in-K-feldspar provenance tools) coupled with outcrop investigation is used to constrain the temporal trends in sediment delivery to channel sandstones of the fluvio-estuarine mid-Viséan Mullaghmore Sandstone Formation, Ireland. Provenance data indicate unique detrital signatures for all sampled horizons, indicating the fluctuating nature of sediment supply to this medium-sized basin. Tectonism and/or abrupt relative sea-level fall likely caused fluvial rejuvenation, resulting in local basement sourcing of the initial fill. Older and more distal sources, such as the Nagssugtoqidian Belt of East Greenland, become more prominent in stratigraphically younger channel sandstones suggesting catchment expansion. Paleoproterozoic to Mesoproterozoic sources are most dominant, yet the detrital grain cargo varies in each channel sandstone. Proximal sources such as the Donegal Batholith and Dalradian Supergroup are variable and appear to switch on and off. These signal shifts are likely the result of channel migration and paleoclimatic fluctuation. A monsoonal climate and large-scale wildfire events (evidenced by fusain) likely contributed to modify plant cover, intensify erosion, and increase run-off and sediment delivery rates from specific areas of the hinterland.


2021 ◽  
Vol 33 (6) ◽  
pp. 308-320
Author(s):  
Yeon-Joong Kim ◽  
Joung-Woon Woo ◽  
Jong-Sung Yoon ◽  
Myoung-Kyu Kim

An integrated sediment management approach that includes the recovery of the amount of declined sediment supply is effective as a fundamental solution to coastal erosion. During planning, it is essential to analyze the transfer mechanism of the sediments generated from estuaries (the junction between a river and sea) to assess the amount and rate of sediment discharge (from the river to sea) supplied back to the coast. Although numerical models that interpret the tidal sand bar flushing process during flooding have been studied, thus far, there has been no study focusing on the formation and development processes of tidal sand bars. Therefore, this study aims to construct wave deformation, flow regime calculation, and topographic change analysis models to assess the amount of recovered sediment discharge and reproduce the tidal sand bar formation process through numerical analysis for integrated littoral drift management. The tidal sand bar formation process was simulated, and the wave energy and duration of action concepts were implemented to predict the long-term littoral movement. The river flux and wave conditions during winter when tidal sand bars dominantly develop were considered as the external force conditions required for calculation. The initial condition of the topographic data directly after the Maeupcheon tidal sand bar flushing during flooding was set as the initial topography. Consequently, the tidal sand bar formation and development due to nearshore currents dependent on the incident wave direction were reproduced. Approximately 66 h after the initial topography, a sand bar formation was observed at the Maengbang estuary.


2021 ◽  
Vol 16 (3) ◽  
pp. 942-952
Author(s):  
KAMAL NAG

Terrestrial sediment is a major source of sediment to all coasts. Suspended sediment is carried away by the rivers and supplied to the coast to maintain sediment budget. The construction of dams across the rivers arrest sediment behind it and affect the sediment budget of littoral cells along the coast. Reduction in sediment supply induces ecological as well as geomorphological changes along the shoreline. Coastal erosion may accelerate due to reduced sediment influx. With the growing number of cross-river dams and water diversion projects, it has become a major concern before the scientific community to measure, understand and find solutions to multi-fold geo-environmental problems that are arising out of river damming. The present study aims to find out the impact of dams on the coast. It examines how the changes in the suspended sediment supply of an Indian river impact the coast in terms of loss of area due to erosion. Temporal analysis of geomorphological changes along the shoreline in relation to sediment influx holds immense importance to coastal management essential for the sustainable life and livelihood of coastal communities. Scientific investigation into the impact of river dams on the coastal environment is likely to provide a strong ground to reconsider the way present basin development projects function. Areal changes in littoral sediment cells adjacent to the river mouth have been quantified and correlated with changes in sediment influx. Changes along the shorelines have been detected through multispectral satellite images of Landsat belonging to different dates. Image processing and quantification of changes have been performed in QGIS 3.14 “Pi” platform. Virtual raster, raster calculator, field calculator and other required tools in QGIS were used during image processing.


Author(s):  
Md. Masidul Haque ◽  
Manoj Kumer Ghosh ◽  
Koichi Hoyanagi

Sea-level rise and sediment supply have influenced coastal morphology and sedimentation on Bangladesh’s southwestern Ganges‐Brahmaputra‐Meghna (GBM) delta coast. Satellite images and geological core from the Haringhata coastal region were analyzed to explain the morphological changes and to understand the influences on deposits. The results derived from satellite images indicate that the southern coastline experienced a retreat that ranges between 2.3 and 2.9 km. In contrast, the eastern and western coastline advanced. The erosion and accretion ratio was 0.29 from 1977 to 1989, while the ratio was higher 2.90–4.77 from 1989 to 2020. Two sedimentary facies were identified using 130 cm thick successions. A parallel to wavy laminated bluish gray mud facies of deeper part was deposited in a marine-influenced environment. A planar to hummocky cross stratified, gray to grayish white silty sand facies of storm overwash deposits overlies the mud facies with sharp contacts. Unimodal to bimodal grain distributions of sandy sediments suggest two sources: sand derived from the beach and mud carried by adjacent tidal rivers and resuspended offshore sediment. Coastline dynamics and sedimentation of the area were influenced by inequality of accommodation and sediment supply ratio in the river mouth. This occurs due to sea-level rise and deficit in upstream water and sediment discharge. Morphological change along the southwestern GBM delta coast was not only caused by wave energy, but also by rising sea levels which shifted sediment accommodation space landward.


Author(s):  
Carolina Martínez ◽  
Patricio Winckler Grez ◽  
Roberto Agredano Martín ◽  
César Esparza Acuña ◽  
Iván Torres ◽  
...  

Coastal erosion in 45 sandy beaches covering nearly 2000 km along the tectonically active Chilean coast is assessed during the last four decades. The historical analysis is based on the assessment of decadal changes of the shoreline position extracted from topographic surveys, aerial photographs, satellite images and survey maps using the DSAS software. Results show that 80% of the sites presented erosion rates (>−0.2 m/y), 7% beaches accreted (>0.2 m/y) while 13% remained stable. Eroded beaches include headland bay beaches, embayed and pocket beaches. A discussion on the possible causes explaining these results is conducted. While changes in offshore wave climate are spatially smooth within the region, relative mean sea level changes are highly variable and modulated by tectonic activity; the reduction of the sediment supply explains erosion rates in few cases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haozhuang Wang ◽  
Jürgen Titschack ◽  
Claudia Wienberg ◽  
Chelsea Korpanty ◽  
Dierk Hebbeln

The formation of cold-water coral (CWC) mounds is commonly seen as being the result of the sustained growth of framework-forming CWCs and the concurrent supply and deposition of terrigenous sediments under energetic hydrodynamic conditions. Yet only a limited number of studies investigated the complex interplay of the various hydrodynamic, sedimentological and biological processes involved in mound formation, which, however, focused on the environmental conditions promoting coral growth. Therefore, we are still lacking an in-depth understanding of the processes allowing the on-mound deposition of hemipelagic sediments, which contribute to two thirds of coral mound deposits. To investigate these processes over geological time and to evaluate their contribution to coral mound formation, we reconstructed changes in sediment transport and deposition by comparing sedimentological parameters (grain-size distribution, sediment composition, accumulation rates) of two sediment cores collected from a Mediterranean coral mound and the adjacent seafloor (off-mound). Our results showed that under a turbulent hydrodynamic regime promoting coral growth during the Early Holocene, the deposition of fine siliciclastic sediments shifted from the open seafloor to the coral mounds. This led to a high average mound aggradation rate of >130 cm kyr–1, while sedimentation rates in the adjacent off-mound area at the same time did not exceed 10 cm kyr–1. Thereby, the baffling of suspended sediments by the coral framework and their deposition within the ecological accommodation space provided by the corals seem to be key processes for mound formation. Although, it is commonly accepted that these processes play important roles in various sedimentary environments, our study provided for the first time, core-based empirical data proving the efficiency of these processes in coral mound environment. In addition, our approach to compare the grain-size distribution of the siliciclastic sediments deposited concurrently on a coral mound and on the adjacent seafloor allowed us to investigate the integrated influence of coral mound morphology and coral framework on the mound formation process. Based on these results, this study provides the first conceptual model for coral mound formation by applying sequence stratigraphic concepts, which highlights the interplay of the coral-framework baffling capacity, coral-derived ecological accommodation space and sediment supply.


Sign in / Sign up

Export Citation Format

Share Document