Macroscopic fundamental diagram in simple model of urban traffic

2016 ◽  
Vol 22 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Naoki Yoshioka ◽  
Takashi Shimada ◽  
Nobuyasu Ito
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
YangBeibei Ji ◽  
Chao Mo ◽  
Wanjing Ma ◽  
Dabin Liao

Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD) of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amr M. Wahaballa ◽  
Seham Hemdan ◽  
Fumitaka Kurauchi

Purpose Road pricing is an efficient strategy for managing urban traffic to relieve congestion. The macroscopic fundamental diagram (MFD), which relates the average network density and flow, is a simple tool for assessing road pricing effects on transportation network performance. However, recent research indicates that it may have complexity (an MFD hysteresis loop), especially for city-scale networks. Although ignoring MFD hysteresis may provide inaccurate results, pricing models that consider this hysteresis are scarce. This paper aims to assess road pricing effects on network performance considering MFD hysteresis characteristics. Design/methodology/approach This paper evaluated different pricing strategies spatially and temporally and compared network performance based on MFD shape in the presence of MFD hysteresis loops. These strategies were developed on a multimodal (cars and buses) network using a multi-agent transport simulation (MATSim). Findings This study found that pricing some links for a short duration with an optimum charge calculated based on the MFD provides higher travel time savings than the previous relevant studies. Originality/value These findings may facilitate assessing road pricing effects on multimodal network performance considering MFD hysteresis.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Chih-Cheng Hsu ◽  
Yu-Chiun Chiou

Previous cellular automata (CA) models have been developed for simulating driver behaviors in response to traffic signal control. However, driver behaviors during traffic signal change intervals, including cross/stop decision and speed adjustment, have not yet been studied. Based on this, this paper aims to propose a change interval CA model for replicating driver’s perception and response to amber light based on stopping probability and speed adjusting functions. The proposed model has been validated by exemplified and field cases. To investigate the applicability of the proposed model, macroscopic and microscopic analyses are conducted. Although the macroscopic fundamental diagram analysis reveals only a small decrease in maximum traffic flow rates with considering driver behaviors in change intervals, in the microscopic analysis, the proposed model can present reasonable vehicular trajectories and deceleration rates during slowdown process.


Sign in / Sign up

Export Citation Format

Share Document