In the stateful data plane, the switch can record the state and forward packets based on the local state. This approach makes it possible to integrate complex network applications into the data plane, thus reducing the amount of communication required between the switch and the controller. However, due to the time it takes to look up the state for packets, packet-forwarding latency has increased. With increased network traffic, a large number of states may be recorded in the switch, and the problem of increased packet-forwarding latency caused by the lookup state becomes more serious. In this paper, we propose the multi-scope state area (MSSA) for recording state inside the switch, which can achieve a fixed-time state lookup in a large-scale state. MSSA divides the state sharing scope by associating with the switch’s multiple match–action tables, and the shared scope is used to determine the state area for recording state. When processing a packet, the state required will only be in a limited number of states that are recorded in a few state areas. We implemented a prototype pipeline that supports MSSA based on Intel’s DPDK framework and investigated the effect of state type, number, location, and comparison method on state search/insertion time. The results show that the cost of MSSA search state is constant, regardless of the number of states, and MSSA has a high space utilization rate.