scholarly journals A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error

CALCOLO ◽  
2018 ◽  
Vol 55 (3) ◽  
Author(s):  
M. I. Bueno ◽  
F. M. Dopico ◽  
S. Furtado ◽  
L. Medina
PAMM ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 817-818
Author(s):  
Albrecht Böttcher ◽  
Martin Halwass

2019 ◽  
Vol 35 ◽  
pp. 116-155
Author(s):  
Biswajit Das ◽  
Shreemayee Bora

The complete eigenvalue problem associated with a rectangular matrix polynomial is typically solved via the technique of linearization. This work introduces the concept of generalized linearizations of rectangular matrix polynomials. For a given rectangular matrix polynomial, it also proposes vector spaces of rectangular matrix pencils with the property that almost every pencil is a generalized linearization of the matrix polynomial which can then be used to solve the complete eigenvalue problem associated with the polynomial. The properties of these vector spaces are similar to those introduced in the literature for square matrix polynomials and in fact coincide with them when the matrix polynomial is square. Further, almost every pencil in these spaces can be `trimmed' to form many smaller pencils that are strong linearizations of the matrix polynomial which readily yield solutions of the complete eigenvalue problem for the polynomial. These linearizations are easier to construct and are often smaller than the Fiedler linearizations introduced in the literature for rectangular matrix polynomials. Additionally, a global backward error analysis applied to these linearizations shows that they provide a wide choice of linearizations with respect to which the complete polynomial eigenvalue problem can be solved in a globally backward stable manner.


2011 ◽  
Vol 435 (9) ◽  
pp. 2193-2221 ◽  
Author(s):  
Bibhas Adhikari ◽  
Rafikul Alam ◽  
Daniel Kressner

2019 ◽  
Vol 564 ◽  
pp. 170-200 ◽  
Author(s):  
Luis Miguel Anguas ◽  
María Isabel Bueno ◽  
Froilán M. Dopico

2011 ◽  
Vol 236 (6) ◽  
pp. 1464-1480 ◽  
Author(s):  
Fernando De Terán ◽  
Froilán M. Dopico ◽  
D. Steven Mackey

Author(s):  
Yan V. Fyodorov ◽  
Wojciech Tarnowski

Abstract We study the distribution of the eigenvalue condition numbers $$\kappa _i=\sqrt{ ({\mathbf{l}}_i^* {\mathbf{l}}_i)({\mathbf{r}}_i^* {\mathbf{r}}_i)}$$ κ i = ( l i ∗ l i ) ( r i ∗ r i ) associated with real eigenvalues $$\lambda _i$$ λ i of partially asymmetric $$N\times N$$ N × N random matrices from the real Elliptic Gaussian ensemble. The large values of $$\kappa _i$$ κ i signal the non-orthogonality of the (bi-orthogonal) set of left $${\mathbf{l}}_i$$ l i and right $${\mathbf{r}}_i$$ r i eigenvectors and enhanced sensitivity of the associated eigenvalues against perturbations of the matrix entries. We derive the general finite N expression for the joint density function (JDF) $${{\mathcal {P}}}_N(z,t)$$ P N ( z , t ) of $$t=\kappa _i^2-1$$ t = κ i 2 - 1 and $$\lambda _i$$ λ i taking value z, and investigate its several scaling regimes in the limit $$N\rightarrow \infty $$ N → ∞ . When the degree of asymmetry is fixed as $$N\rightarrow \infty $$ N → ∞ , the number of real eigenvalues is $$\mathcal {O}(\sqrt{N})$$ O ( N ) , and in the bulk of the real spectrum $$t_i=\mathcal {O}(N)$$ t i = O ( N ) , while on approaching the spectral edges the non-orthogonality is weaker: $$t_i=\mathcal {O}(\sqrt{N})$$ t i = O ( N ) . In both cases the corresponding JDFs, after appropriate rescaling, coincide with those found in the earlier studied case of fully asymmetric (Ginibre) matrices. A different regime of weak asymmetry arises when a finite fraction of N eigenvalues remain real as $$N\rightarrow \infty $$ N → ∞ . In such a regime eigenvectors are weakly non-orthogonal, $$t=\mathcal {O}(1)$$ t = O ( 1 ) , and we derive the associated JDF, finding that the characteristic tail $${{\mathcal {P}}}(z,t)\sim t^{-2}$$ P ( z , t ) ∼ t - 2 survives for arbitrary weak asymmetry. As such, it is the most robust feature of the condition number density for real eigenvalues of asymmetric matrices.


Sign in / Sign up

Export Citation Format

Share Document