linear least squares problem
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3582
Author(s):  
Federica Vitiello ◽  
Flavia Causa ◽  
Roberto Opromolla ◽  
Giancarmine Fasano

This paper describes a calibration technique aimed at combined estimation of onboard and external magnetic disturbances for small Unmanned Aerial Systems (UAS). In particular, the objective is to estimate the onboard horizontal bias components and the external magnetic declination, thus improving heading estimation accuracy. This result is important to support flight autonomy, even in environments characterized by significant magnetic disturbances. Moreover, in general, more accurate attitude estimates provide benefits for georeferencing and mapping applications. The approach exploits cooperation with one or more “deputy” UAVs and combines drone-to-drone carrier phase differential GNSS and visual measurements to attain magnetic-independent attitude information. Specifically, visual and GNSS information is acquired at different heading angles, and bias estimation is modelled as a non-linear least squares problem solved by means of the Levenberg–Marquardt method. An analytical error budget is derived to predict the achievable accuracy. The method is then demonstrated in flight using two customized quadrotors. A pointing analysis based on ground and airborne control points demonstrates that the calibrated heading estimate allows obtaining an angular error below 1°, thus resulting in a substantial improvement against the use of either the non-calibrated magnetic heading or the multi-sensor-based solution of the DJI onboard navigation filter, which determine angular errors of the order of several degrees.


2020 ◽  
Vol 12 (4) ◽  
pp. 1486
Author(s):  
Manuel Ayala ◽  
Diego Huaraca ◽  
José Varela-Aldás ◽  
Andrea Ordóñez ◽  
Genís Riba

City growth goes together with the development of infrastructure, and the power network is one of the most relevant towards economic development. The study of urban infrastructure through the analysis of anthropization coupled with power network growth can produce a tool that supports sustainable infrastructure planning, both economic and environmental. The case study focuses on Ambato, Ecuador, in the period from 1950 to 2019, and assesses quantitatively the changes in the city layout and the evolution of its power network. The data are adjusted to a sigmoid-type objective function through a non-linear least squares problem, that is solved using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Anthropization data show how the urban area grew during the study period: 37% (1950–1960), 53% (1960–1970), 80% (1970–1980), 35% (1980–1990), 39% (1990–2000), 38% (2000–2010), and 11% (2010–2019), mostly at the expense of agricultural land. The forecast for new power network users by 2050 yields a result of 203,630 total users with a population density of 4850 people/km2. The conclusion is that this type of analysis can help city planners and decision makers further understand city and infrastructure growth dynamics and produce policies that bolster sustainable city growth.


2018 ◽  
Vol 34 (2) ◽  
pp. 183-190
Author(s):  
D. CARP ◽  
◽  
C. POPA ◽  
T. PRECLIK ◽  
U. RUDE ◽  
...  

In this paper we present a generalization of Strand’s iterative method for numerical approximation of the weighted minimal norm solution of a linear least squares problem. We prove convergence of the extended algorithm, and show that previous iterative algorithms proposed by L. Landweber, J. D. Riley and G. H. Golub are particular cases of it.


Sign in / Sign up

Export Citation Format

Share Document