The ϰ°-relation on the congruence lattice of a regular semigroup with an inverse transversal

2011 ◽  
Vol 28 (5) ◽  
pp. 1061-1074
Author(s):  
Ying Ying Feng ◽  
Li Min Wang
1997 ◽  
Vol 40 (3) ◽  
pp. 505-514 ◽  
Author(s):  
T. S. Blyth ◽  
M. H. Almeida Santos

An inverse transversal of a regular semigroup S is an inverse subsemigroup So that contains precisely one inverse of each element of S. Here we consider the case where S is quasi-orthodox. We give natural characterisations of such semigroups and consider various properties of congruences.


1996 ◽  
Vol 39 (1) ◽  
pp. 57-69 ◽  
Author(s):  
T. S. Blyth ◽  
M. H. Almeida Santos

An inverse transversal of a regular semigroup S is an inverse subsemigroup that contains precisely one inverse of each element of S. In the literature there are three known types of inverse transversal, namely those that are multiplicative, those that are weakly multiplicative, and those that form quasi-ideals. Here, by considering natural ways in which certain words can be simplified, we reveal four new types of inverse transversal. All of these can be illustrated nicely in examples that are based on 2 × 2 matrices.


1997 ◽  
Vol 40 (3) ◽  
pp. 457-472 ◽  
Author(s):  
Mario Petrich

Let S be a regular semigroup and be its congruence lattice. For ρ ∈ , we consider the sublattice Lρ of generated by the congruences pw where w ∈ {K, k, T, t}* and w has no subword of the form KT, TK, kt, tk. Here K, k, T, t are the operators on induced by the kernel and the trace relations on . We find explicitly the least lattice L whose homomorphic image is Lρ for all ρ ∈ and represent it as a distributive lattice in terms of generators and relations. We also consider special cases: bands of groups, E-unitary regular semigroups, completely simple semigroups, rectangular groups as well as varieties of completely regular semigroups.


1996 ◽  
Vol 06 (06) ◽  
pp. 655-685 ◽  
Author(s):  
K. AUINGER ◽  
T.E. HALL

On any eventually regular semigroup S, congruences ν, μL, μR, μ, K, KL, KR, ζ are introduced which are the greatest congruences over: nil-extensions (n.e.) of completely simple semigroups, n.e. of left groups, n.e. of right groups, n.e. of groups, n.e. of rectangular bands, n.e. of left zero semigroups, n.e. of right zero semigroups, nil-semigroups, respectively. Each of these congruences is induced by a certain representation of S which is defined on an arbitrary semigroup. These congruences play an important role in the study of lattices of varieties, pseudovarieties and existence varieties. The investigation also leads to eight complete congruences U, Tt, Tr, T, K, Kl, Kr, Z on the congruence lattice Con (S) of S.


Author(s):  
T. S. Blyth ◽  
R. McFadden

SynopsisBy an inverse transversal of a regular semigroup S we mean an inverse subsemigroup that contains a single inverse of every element of S. A certain multiplicative property (which in the case of a band is equivalent to normality) is imposed on an inverse transversal and a complete description of the structure of S is obtained.


1996 ◽  
Vol 38 (3) ◽  
pp. 347-357 ◽  
Author(s):  
Mario Petrich

Let R be a regular semigroup and denote by (R) its congruence lattice. For , the kernel of pis the set ker . The relation K on (R) defined by λKp if ker λ = ker p is the kernel relation on (R). In general, K is a complete ∩-congruence but it is not a v-congruence. In view of the importance of the kernel-trace approach to the study of congruences on a regular semigroup (the trace of p is its restriction to idempotents of R), it is of considerable interest to determine necessary and sufficient conditions on R in order for K to be a congruence. This being in general a difficult task, one restricts attention to special classes of regular semigroups. For a background on this subject, consult [1].


1980 ◽  
Vol 23 (2) ◽  
pp. 193-198 ◽  
Author(s):  
W. D. Munn

The purpose of this note is to extend the results of Reilly and Scheiblich (6) (see also Scheiblich (7) and Hall (2)) on the θ-class decomposition of the congruence lattice of a regular semigroup and, at the same time, to provide an alternative proof of these results.


1994 ◽  
Vol 37 (1) ◽  
pp. 91-99 ◽  
Author(s):  
T. S. Blyth ◽  
M. H. Almeida Santos

We show that an inverse transversal of a regular semigroup is multiplicative if and only if it is both weakly multiplicative and a quasi-ideal. Examples of quasi-ideal inverse transversals that are not multiplicative are known. Here we give an example of a weakly multiplicative inverse transversal that is not multiplicative. An interesting feature of this example is that it also serves to show that, in an ordered regular semigroup in which every element x has a biggest inverse x0, the mapping x↦x00 is not in general a closure; nor is x↦x** in a principally ordered regular semigroup.


1989 ◽  
Vol 32 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Tatsuhiko Saito

Let S be a regular semigroup. An inverse subsemigroup S° of S is an inverse transversal if |V(x)∩S°| = 1 for each x∈S, where V(x) denotes the set of inverses of x. In this case, the unique element of V(x)∩S° is denoted by x°, and x°° denotes (x°)–1. Throughout this paper S denotes a regular semigroup with an inverse transversal S°, and E(S°) = E° denotes the semilattice of idempotents of S°. The sets {e∈S:ee° = e} and {f∈S:f°f=f} are denoted by Is and Λs, respectively, or simply I and Λ. Though each element of these sets is idempotent, they are not necessarily sub-bands of S. When both I and Λ are sub-bands of S, S° is called an S-inverse transversal. An inverse transversal S° is multiplicative if x°xyy°∈E°, and S° is weakly multiplicative if (x°xyy°)°∈E° for every x, y∈S. A band B is left [resp. right] regular if e f e = e f [resp. e f e = f e], and B is left [resp. right] normal if e f g = e g f [resp. e f g = f e g] for every e, f, g∈B. A subset Q of S is a quasi-ideal of S if QSQ ⊆ S.


Sign in / Sign up

Export Citation Format

Share Document