Heterogeneous representation learning with separable structured sparsity regularization

2017 ◽  
Vol 55 (3) ◽  
pp. 671-694 ◽  
Author(s):  
Pei Yang ◽  
Qi Tan ◽  
Yada Zhu ◽  
Jingrui He
Author(s):  
Bin Gu ◽  
Xingwang Ju ◽  
Xiang Li ◽  
Guansheng Zheng

Structured-sparsity regularization is popular for sparse learning because of its flexibility of encoding the feature structures. This paper considers a generalized version of structured-sparsity regularization (especially for $l_1/l_{\infty}$ norm) with arbitrary group overlap. Due to the group overlap, it is time-consuming to solve the associated proximal operator. Although Mairal~\shortcite{mairal2010network} have proposed a  network-flow  algorithm to solve the proximal operator, it is still time-consuming especially in the high-dimensional setting. To address this challenge, in this paper, we have developed a more efficient solution for $l_1/l_{\infty}$ group lasso with arbitrary group overlap using an Inexact Proximal-Gradient method. In each iteration, our algorithm only requires to calculate an inexact solution to the proximal sub-problem, which can be done efficiently. On the theoretic side, the proposed algorithm enjoys the same global convergence rate as the exact proximal methods. Experiments demonstrate that our algorithm is much more efficient than network-flow algorithm, while retaining the similar generalization performance.


2020 ◽  
Vol 15 (7) ◽  
pp. 750-757
Author(s):  
Jihong Wang ◽  
Yue Shi ◽  
Xiaodan Wang ◽  
Huiyou Chang

Background: At present, using computer methods to predict drug-target interactions (DTIs) is a very important step in the discovery of new drugs and drug relocation processes. The potential DTIs identified by machine learning methods can provide guidance in biochemical or clinical experiments. Objective: The goal of this article is to combine the latest network representation learning methods for drug-target prediction research, improve model prediction capabilities, and promote new drug development. Methods: We use large-scale information network embedding (LINE) method to extract network topology features of drugs, targets, diseases, etc., integrate features obtained from heterogeneous networks, construct binary classification samples, and use random forest (RF) method to predict DTIs. Results: The experiments in this paper compare the common classifiers of RF, LR, and SVM, as well as the typical network representation learning methods of LINE, Node2Vec, and DeepWalk. It can be seen that the combined method LINE-RF achieves the best results, reaching an AUC of 0.9349 and an AUPR of 0.9016. Conclusion: The learning method based on LINE network can effectively learn drugs, targets, diseases and other hidden features from the network topology. The combination of features learned through multiple networks can enhance the expression ability. RF is an effective method of supervised learning. Therefore, the Line-RF combination method is a widely applicable method.


Sign in / Sign up

Export Citation Format

Share Document