sparse learning
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 120)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
pp. 108088
Author(s):  
Zhongwei Huang ◽  
Haijun Lei ◽  
Guoliang Chen ◽  
Haimei Li ◽  
Chuandong Li ◽  
...  

2021 ◽  
Author(s):  
Ziyuan Zhao ◽  
Zeyu Ma ◽  
Yanjie Liu ◽  
Zeng Zeng ◽  
Pierce KH Chow

2021 ◽  
Vol 2078 (1) ◽  
pp. 012006
Author(s):  
Lipeng Cui ◽  
Jie Shen ◽  
Song Yao

Abstract The sparse model plays an important role in many aeras, such as in the machine learning, image processing and signal processing. The sparse model has the ability of variable selection, so they can solve the over-fitting problem. The sparse model can be introduced into the field of support vector machine in order to get classification of the labels and sparsity of the variables simultaneously. This paper summarizes various sparse support vector machines. Finally, we revealed the research directions of the sparse support vector machines in the future.


2021 ◽  
pp. 1-18
Author(s):  
Yunwen Zhu ◽  
Wenjun Zhang ◽  
Meixian Zhang ◽  
Ke Zhang ◽  
Yonghua Zhu

With the trend of people expressing opinions and emotions via images online, increasing attention has been paid to affective analysis of visual content. Traditional image affective analysis mainly focuses on single-label classification, but an image usually evokes multiple emotions. To this end, emotion distribution learning is proposed to describe emotions more explicitly. However, most current studies ignore the ambiguity included in emotions and the elusive correlations with complex visual features. Considering that emotions evoked by images are delivered through various visual features, and each feature in the image may have multiple emotion attributes, this paper develops a novel model that extracts multiple features and proposes an enhanced fuzzy k-nearest neighbor (EFKNN) to calculate the fuzzy emotional memberships. Specifically, the multiple visual features are converted into fuzzy emotional memberships of each feature belonging to emotion classes, which can be regarded as an intermediate representation to bridge the affective gap. Then, the fuzzy emotional memberships are fed into a fully connected neural network to learn the relationships between the fuzzy memberships and image emotion distributions. To obtain the fuzzy memberships of test images, a novel sparse learning method is introduced by learning the combination coefficients of test images and training images. Extensive experimental results on several datasets verify the superiority of our proposed approach for emotion distribution learning of images.


2021 ◽  
Author(s):  
Benjamin B Bartelle ◽  
Mohammad Abbasi ◽  
Connor Sanderford ◽  
Narendian Raghu

We have developed representation learning methods, specifically to address the constraints and advantages of complex spatial data. Sparse filtering (SFt), uses principles of sparsity and mutual information to build representations from both global and local features from a minimal list of samples. Critically, the samples that comprise each representation are listed and ranked by informativeness. We used the Allen Mouse Brain Atlas gene expression data for prototyping and established performance metrics based on representation accuracy to labeled anatomy. SFt, implemented with the PyTorch machine learning libraries for Python, returned the most accurate reconstruction of anatomical ground truth of any method tested. SFt generated gene lists could be further compressed, retaining 95% of informativeness with only 580 genes. Finally, we build classifiers capable of parsing anatomy with >95% accuracy using only 10 derived genes. Sparse learning is a powerful, but underexplored means to derive biologically meaningful representations from complex datasets and a quantitative basis for compressed sensing of classifiable phenomena. SFt should be considered as an alternative to PCA or manifold learning for any high dimensional dataset and the basis for future spatial learning algorithms.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Xiaoqing Huang ◽  
Kun Huang ◽  
Travis Johnson ◽  
Milan Radovich ◽  
Jie Zhang ◽  
...  

Abstract Prediction of cancer-specific drug responses as well as identification of the corresponding drug-sensitive genes and pathways remains a major biological and clinical challenge. Deep learning models hold immense promise for better drug response predictions, but most of them cannot provide biological and clinical interpretability. Visible neural network (VNN) models have emerged to solve the problem by giving neurons biological meanings and directly casting biological networks into the models. However, the biological networks used in VNNs are often redundant and contain components that are irrelevant to the downstream predictions. Therefore, the VNNs using these redundant biological networks are overparameterized, which significantly limits VNNs’ predictive and explanatory power. To overcome the problem, we treat the edges and nodes in biological networks used in VNNs as features and develop a sparse learning framework ParsVNN to learn parsimony VNNs with only edges and nodes that contribute the most to the prediction task. We applied ParsVNN to build cancer-specific VNN models to predict drug response for five different cancer types. We demonstrated that the parsimony VNNs built by ParsVNN are superior to other state-of-the-art methods in terms of prediction performance and identification of cancer driver genes. Furthermore, we found that the pathways selected by ParsVNN have great potential to predict clinical outcomes as well as recommend synergistic drug combinations.


Sign in / Sign up

Export Citation Format

Share Document