scholarly journals Detection of copy number variations by pair analysis using next-generation sequencing data in inherited kidney diseases

2018 ◽  
Vol 22 (4) ◽  
pp. 881-888 ◽  
Author(s):  
China Nagano ◽  
Kandai Nozu ◽  
Naoya Morisada ◽  
Masahiko Yazawa ◽  
Daisuke Ichikawa ◽  
...  
2012 ◽  
Vol 40 (9) ◽  
pp. e69-e69 ◽  
Author(s):  
Günter Klambauer ◽  
Karin Schwarzbauer ◽  
Andreas Mayr ◽  
Djork-Arné Clevert ◽  
Andreas Mitterecker ◽  
...  

2018 ◽  
Author(s):  
Bas Tolhuis ◽  
Hans Karten

AbstractDNA Copy Number Variations (CNVs) are an important source for genetic diversity and pathogenic variants. Next Generation Sequencing (NGS) methods have become increasingly more popular for CNV detection, but its data analysis is a growing bottleneck. Genalice CNV is a novel tool for detection of CNVs. It takes care of turnaround time, scalability and cost issues associated with NGS computational analysis. Here, we validate Genalice CNV with MLPA-verified exon CNVs and genes with normal copy numbers. Genalice CNV detects 61 out of 62 exon CNVs and its false positive rate is less than 1%. It analyzes 96 samples from a targeted NGS assay in less than 45 minutes, including read alignment and CNV detection, using a single node. Furthermore, we describe data quality measures to minimize false discoveries. In conclusion, Genalice CNV is highly sensitive and specific, as well as extremely fast, which will be beneficial for clinical detection of CNVs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tihao Huang ◽  
Junqing Li ◽  
Baoxian Jia ◽  
Hongyan Sang

Copy number variation (CNV), is defined as repetitions or deletions of genomic segments of 1 Kb to 5 Mb, and is a major trigger for human disease. The high-throughput and low-cost characteristics of next-generation sequencing technology provide the possibility of the detection of CNVs in the whole genome, and also greatly improve the clinical practicability of next-generation sequencing (NGS) testing. However, current methods for the detection of CNVs are easily affected by sequencing and mapping errors, and uneven distribution of reads. In this paper, we propose an improved approach, CNV-MEANN, for the detection of CNVs, involving changing the structure of the neural network used in the MFCNV method. This method has three differences relative to the MFCNV method: (1) it utilizes a new feature, mapping quality, to replace two features in MFCNV, (2) it considers the influence of the loss categories of CNV on disease prediction, and refines the output structure, and (3) it uses a mind evolutionary algorithm to optimize the backpropagation (neural network) neural network model, and calculates individual scores for each genome bin to predict CNVs. Using both simulated and real datasets, we tested the performance of CNV-MEANN and compared its performance with those of seven widely used CNV detection methods. Experimental results demonstrated that the CNV-MEANN approach outperformed other methods with respect to sensitivity, precision, and F1-score. The proposed method was able to detect many CNVs that other approaches could not, and it reduced the boundary bias. CNV-MEANN is expected to be an effective method for the analysis of changes in CNVs in the genome.


Sign in / Sign up

Export Citation Format

Share Document