scholarly journals Attribute-based encryption and sticky policies for data access control in a smart home scenario: a comparison on networked smart object middleware

Author(s):  
Sabrina Sicari ◽  
Alessandra Rizzardi ◽  
Gianluca Dini ◽  
Pericle Perazzo ◽  
Michele La Manna ◽  
...  

AbstractRegulating the access to the Internet of Things (IoT) network’s resources is a complex-prone task, which requires to pay a great attention on how policies are defined, shared, and enforced. The present paper considers the specific context of a smart home, which represents one of the main IoT application domains, and it focuses on two solutions proposed in the literature to cope with the aforementioned issues. On the one side, approaches based on attribute-based encryption (ABE) allow one to encrypt data for multiple recipients, in such a way that only those recipients whose attributes satisfy a given access policy can decrypt afterward. ABE guarantees a high level of customization due to the variety of attributes which can be defined, and it is also flexible enough to be adapted to different kinds of scenarios. On the other side, approaches based on sticky policies allow to attach an access policy directly to the data itself, and to employ a trusted authority to evaluate and enforce the policy itself. Sticky policies also guarantee a highly distributed and customizable enforcement of access control rules. In this paper, we compare the advantages and the drawbacks in terms of performance and robustness of such two techniques by means of their integration within the prototype of an IoT middleware, named networked smart object. Hence, the effectiveness of the presented solutions is validated by means of a real test-bed in the smart home scenario, in terms of storage occupancy, CPU load, and data retrieval delay. The final goal is to reveal the best approach to be used depending on the application’s requirements.

2018 ◽  
Vol 7 (2.7) ◽  
pp. 20 ◽  
Author(s):  
Rakesh Shirsath ◽  
Dr K. V. Daya Sagar

Nowadays cloud computing is most demanding technology where computing resources are availed as per demand through Internet. Cloud computing model also brings many challenges for confidentiality, integrity, privacy of data and data access control. As cloud computing develops vigorously, an increasing number of enterprises and individuals are motivated to upload their data sources to the public cloud server for sharing. It is not entirely credible for enterprises and individuals to transfer data owing to the openness of the cloud server, so they must encrypt data before uploading and also loose direct control of data. Therefore, an elastic access control or fine-grained access control approach for data is urgently required and becomes a challenging open problem. In this paper, the issue of access control is discussed by defining traditional access policies. Attribute based access policy is analysed with its types. Finally, comparison is made among all policies with respect to various parameters.


2018 ◽  
Vol 173 ◽  
pp. 03047
Author(s):  
Zhao Li ◽  
Shuiyuan Huan

There are many security threats such as data’s confidentiality and privacy protection in the new application scenario of big data processing, and for the problems such as coarse granularity and low sharing capability existing in the current research on big data access control, a new model to support fine-grained access control and flexible attribute change is proposed. Based on CP-ABE method, a multi-level attribute-based encryption scheme is designed to solve fine-grained access control problem. And to solve the problem of attribute revocation, the technique of re-encryption and version number tag is integrated into the scheme. The analysis shows that the proposed scheme can meet the security requirement of access control in big data processing environment, and has an advantage in computational overhead compared with the previous schemes.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaofeng Lu ◽  
Songbing Fu ◽  
Cheng Jiang ◽  
Pietro Lio

IoT technology has been widely valued and applied, and the resulting massive IoT data brings many challenges to the traditional centralized data management, such as performance, privacy, and security challenges. This paper proposes an IoT data access control scheme that combines attribute-based encryption (ABE) and blockchain technology. Symmetric encryption and ABE algorithms are utilized to realize fine-grained access control and ensure the security and openness of IoT data. Moreover, blockchain technology is combined with distributed storage to solve the storage bottleneck of blockchain systems. Only the hash values of the data, the hash values of the ciphertext location, the access control policy, and other important information are stored on the blockchain. In this scheme, smart contract is used to implement access control. The results of experiments demonstrate that the proposed scheme can effectively protect the security and privacy of IoT data and realize the secure sharing of data.


Author(s):  
Jayesh Sahebrav Patil ◽  
Prashant Mininath Mane

From the time in memorial, Information Security has remained a primary concern and today when most of the sensitive data is stored on Cloud with client organization having lesser control over the stored data, the fundamental way to fix this issue is to encrypt such data. So, a secure user imposed data access control system must be given, before the users outsource any data to the cloud for storage. Attribute Based Encryption (ABE) system is one such asymmetric key based cryptosystem that has received much attention that provides fine-grained access control to data stored on the cloud. In this paper, we propose a more proficient and richer type of Attribute Based Encryption technique (RSABE) that not only considers the Outsourced ABE construction but also address the issue of revocation in case of change of attributes of the group user or organization; once a user is removed from the group, the keys are updated and these new keys are distributed among the existing users also our system supports the Keyword search over encrypted data in the mobile cloud storage. In multi keyword search; data owners and users can generate the keywords index and search trapdoor, respectively, without relying on always online trusted authority. Experimental results prove that the performance of the proposed system is greater than existing system in terms of security, time consumption and memory utilization & data availability.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 265 ◽  
Author(s):  
Hui Yin ◽  
Yinqiao Xiong ◽  
Jixin Zhang ◽  
Lu Ou ◽  
Shaolin Liao ◽  
...  

Attribute based encryption is a promising technique that achieves flexible and fine-grained data access control over encrypted data, which is very suitable for a secure data sharing environment such as the currently popular cloud computing. However, traditional attribute based encryption fails to provide an efficient keyword based search on encrypted data, which somewhat weakens the power of this encryption technique, as search is usually the most important approach to quickly obtain data of interest from large-scale dataset. To address this problem, attribute based encryption with keyword search (ABKS) is designed to achieve fine-grained data access control and keyword based search, simultaneously, by an ingenious combination of attribute based encryption and searchable encryption. Recently, several ABKS schemes have been constructed in secure cloud storage system for data access control and keyword search. Nonetheless, each of these schemes has some defects such as impractical computation overhead and insufficient access policy expression. To overcome these limitations, in this paper, we design a Key-Policy Searchable Attribute-based Encryption Scheme (KPSABES) based on the full-blown key-policy attribute-based encryption proposed by Vipul Goyal et al. By novel design, our scheme not only inherits all advantages of that scheme but also achieves efficient and secure keyword search over encrypted data. We provide the detailed performance analyses and security proofs for our scheme. Extensive experiments demonstrated that our proposed scheme is superior in many aspects to the similar work.


Sign in / Sign up

Export Citation Format

Share Document