scholarly journals Multi-Level Attribute-Based Encryption Access Control Scheme for Big Data

2018 ◽  
Vol 173 ◽  
pp. 03047
Author(s):  
Zhao Li ◽  
Shuiyuan Huan

There are many security threats such as data’s confidentiality and privacy protection in the new application scenario of big data processing, and for the problems such as coarse granularity and low sharing capability existing in the current research on big data access control, a new model to support fine-grained access control and flexible attribute change is proposed. Based on CP-ABE method, a multi-level attribute-based encryption scheme is designed to solve fine-grained access control problem. And to solve the problem of attribute revocation, the technique of re-encryption and version number tag is integrated into the scheme. The analysis shows that the proposed scheme can meet the security requirement of access control in big data processing environment, and has an advantage in computational overhead compared with the previous schemes.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaofeng Lu ◽  
Songbing Fu ◽  
Cheng Jiang ◽  
Pietro Lio

IoT technology has been widely valued and applied, and the resulting massive IoT data brings many challenges to the traditional centralized data management, such as performance, privacy, and security challenges. This paper proposes an IoT data access control scheme that combines attribute-based encryption (ABE) and blockchain technology. Symmetric encryption and ABE algorithms are utilized to realize fine-grained access control and ensure the security and openness of IoT data. Moreover, blockchain technology is combined with distributed storage to solve the storage bottleneck of blockchain systems. Only the hash values of the data, the hash values of the ciphertext location, the access control policy, and other important information are stored on the blockchain. In this scheme, smart contract is used to implement access control. The results of experiments demonstrate that the proposed scheme can effectively protect the security and privacy of IoT data and realize the secure sharing of data.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 265 ◽  
Author(s):  
Hui Yin ◽  
Yinqiao Xiong ◽  
Jixin Zhang ◽  
Lu Ou ◽  
Shaolin Liao ◽  
...  

Attribute based encryption is a promising technique that achieves flexible and fine-grained data access control over encrypted data, which is very suitable for a secure data sharing environment such as the currently popular cloud computing. However, traditional attribute based encryption fails to provide an efficient keyword based search on encrypted data, which somewhat weakens the power of this encryption technique, as search is usually the most important approach to quickly obtain data of interest from large-scale dataset. To address this problem, attribute based encryption with keyword search (ABKS) is designed to achieve fine-grained data access control and keyword based search, simultaneously, by an ingenious combination of attribute based encryption and searchable encryption. Recently, several ABKS schemes have been constructed in secure cloud storage system for data access control and keyword search. Nonetheless, each of these schemes has some defects such as impractical computation overhead and insufficient access policy expression. To overcome these limitations, in this paper, we design a Key-Policy Searchable Attribute-based Encryption Scheme (KPSABES) based on the full-blown key-policy attribute-based encryption proposed by Vipul Goyal et al. By novel design, our scheme not only inherits all advantages of that scheme but also achieves efficient and secure keyword search over encrypted data. We provide the detailed performance analyses and security proofs for our scheme. Extensive experiments demonstrated that our proposed scheme is superior in many aspects to the similar work.


2017 ◽  
Vol 4 (2) ◽  
pp. 563-571 ◽  
Author(s):  
Kan Yang ◽  
Qi Han ◽  
Hui Li ◽  
Kan Zheng ◽  
Zhou Su ◽  
...  

Author(s):  
Nisha J William ◽  
Nisha O S

Cloud computing is the delivery of computing services including servers, storage, databases, networking, software, analytics, and intelligence over the Internet. Nowadays, access control is one of the most critical problems with cloud computing. Ciphertext-Policy Attribute Based Encryption (CP-ABE) is a promising encryption technique that enables end-users to encrypt their data under the access policies defined over some attributes of data consumers and only allows data consumers whose attributes satisfy the access policies to decrypt the data. In CP-ABE, the access policy is attached to the ciphertext in plaintext form, which may also leak some private information about end-users. Existing methods only partially hide the attribute values in the access policies, while the attribute names are still unprotected. This paper proposes an efficient and fine-grained big data access control scheme with privacy-preserving policy. Specifically, it hides the whole attribute (rather than only its values) in the access policies. To assist data decryption, it designs an algorithm called Attribute Bloom Filter to evaluate whether an attribute is in the access policy and locate the exact position in the access policy if it is in the access policy. The paper also deals with offline attribute guessing attack. Security analysis and performance evaluation show that this scheme can preserve the privacy from any LSSS access policy without employing much overhead.


2020 ◽  
Vol 9 (4) ◽  
pp. 61-81
Author(s):  
G. Sravan Kumar

Ciphertext-policy attribute-based encryption (CP-ABE) schemes provide fine-grained access control for the data stored in cloud computers. However, commercial CP-ABE applications need a new encryption scheme for providing two properties such as: supporting large universe attribute and traceability. First, a large universe attribute allows the attribute authority to use any number of attributes in the system. i.e., the attribute universe is dynamic, and it is not fixed at the setup phase. Second, traceable CP-ABE systems trace the dishonest users who intentionally leak the private key for their profit. In this article, a large universe CP-ABE system with white box traceability has been proposed. The attribute universe of the proposed technique is exponentially larger, and it is polynomially unbound. Further, this technique will trace the identity of users who involve in malicious activities. In addition, the proposed scheme can express any kind of monotonic tree access policies into linear secret sharing structure (LSSS). Compared with the existing schemes that are presented to achieve the same property, proposed scheme has achieved better experimental results and so it is applicable for commercial applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Kaiqing Huang ◽  
Xueli Wang ◽  
Zhiqiang Lin

With the assistance of edge computing which reduces the heavy burden of the cloud center server by using the network edge servers, the Internet of Things (IoTs) architectures enable low latency for real-time devices and applications. However, there still exist security challenges on data access control for the IoT. Multiauthority attribute-based encryption (MA-ABE) is a promising technique to achieve access control over encrypted data in cross-domain applications. Based on the characteristics and technical requirements of the IoT, we propose an efficient fine-grained revocable large universe multiauthority access control scheme. In the proposed scheme, the most expensive encryption operations have been executed in the user’s initialization phase by adding a reusable ciphertext pool besides splitting the encryption algorithm to online encryption and offline encryption. Massive decryption operations are outsourced to the near-edge servers for reducing the computation overhead of decryption. An efficient revocation mechanism is designed to change users’ access privileges dynamically. Moreover, the scheme supports ciphertext verification. Only valid ciphertext can be stored and transmitted, which saves system resources. With the help of the chameleon hash function, the proposed scheme is proven CCA2-secure under the q-DPBDHE2 assumption. The performance analysis results indicate that the proposed scheme is efficient and suitable in edge computing for the IoT.


Sign in / Sign up

Export Citation Format

Share Document