scholarly journals Orthogonal Polynomials on Planar Cubic Curves

Author(s):  
Marco Fasondini ◽  
Sheehan Olver ◽  
Yuan Xu

AbstractOrthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that these orthogonal polynomials can be used to approximate functions with cubic and square root singularities, and demonstrate their usage for solving differential equations with singular solutions.

Author(s):  
Giacomo Ascione ◽  
Nikolai Leonenko ◽  
Enrica Pirozzi

AbstractIn this paper, we study strong solutions of some non-local difference–differential equations linked to a class of birth–death processes arising as discrete approximations of Pearson diffusions by means of a spectral decomposition in terms of orthogonal polynomials and eigenfunctions of some non-local derivatives. Moreover, we give a stochastic representation of such solutions in terms of time-changed birth–death processes and study their invariant and their limit distribution. Finally, we describe the correlation structure of the aforementioned time-changed birth–death processes.


Acta Numerica ◽  
1996 ◽  
Vol 5 ◽  
pp. 45-119 ◽  
Author(s):  
Walter Gautschi

We give examples of problem areas in interpolation, approximation, and quadrature, that call for orthogonal polynomials not of the classical kind. We then discuss numerical methods of computing the respective Gauss-type quadrature rules and orthogonal polynomials. The basic task is to compute the coefficients in the three-term recurrence relation for the orthogonal polynomials. This can be done by methods relying either on moment information or on discretization procedures. The effect on the recurrence coefficients of multiplying the weight function by a rational function is also discussed. Similar methods are applicable to computing Sobolev orthogonal polynomials, although their recurrence relations are more complicated. The paper concludes with a brief account of available software.


Author(s):  
Sheehan Olver ◽  
Yuan Xu

Abstract Orthogonal polynomials on quadratic curves in the plane are studied. These include orthogonal polynomials on ellipses, parabolas, hyperbolas and two lines. For an integral with respect to an appropriate weight function defined on any quadratic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. Convergence of the Fourier orthogonal expansions is also studied in each case. We discuss applications to the Fourier extension problem, interpolation of functions with singularities or near singularities and the solution of Schrödinger’s equation with nondifferentiable or nearly nondifferentiable potentials.


Sign in / Sign up

Export Citation Format

Share Document