Lightweight Topology Optimization with Buckling and Frequency Constraints Using the Independent Continuous Mapping Method

2019 ◽  
Vol 32 (3) ◽  
pp. 310-325
Author(s):  
Weiwei Wang ◽  
Hongling Ye ◽  
Yunkang Sui
2010 ◽  
Vol 37-38 ◽  
pp. 190-193
Author(s):  
Bing Chuan Bian ◽  
Guan Ming Peng ◽  
Yun Kang Sui

In this paper, according to the ICM (Independent Continuous Mapping) method, the topology optimization problem of continuum structures is solved. The topology optimization model for the continuum structure is constructed, which minimized weight as the objective function and was subjected to the buckling constraints. Based on the Taylor expansion, the filtering function and the Rayleigh quotient, the objective function and the buckling constraint are approximately expressed as the explicit function. The optimization model is translated into a dual programming and solved by the sequence second-order programming. Finally, the compressed bar examples are presented. They verified the length coefficient which is converted into stability bar hinged at both ends, identified the location of bottlenecks in topological structures. According to the results, more reasonable topological structures were given.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Hongling Ye ◽  
Ning Chen ◽  
Yunkang Sui ◽  
Jun Tie

The dynamic topology optimization of three-dimensional continuum structures subject to frequency constraints is investigated using Independent Continuous Mapping (ICM) design variable fields. The composite exponential function (CEF) is selected to be a filter function which recognizes the design variables and to implement the changing process of design variables from “discrete” to “continuous” and back to “discrete.” Explicit formulations of frequency constraints are given based on filter functions, first-order Taylor series expansion. And an improved optimal model is formulated using CEF and the explicit frequency constraints. Dual sequential quadratic programming (DSQP) algorithm is used to solve the optimal model. The program is developed on the platform of MSC Patran & Nastran. Finally, numerical examples are given to demonstrate the validity and applicability of the proposed method.


2013 ◽  
Vol 765-767 ◽  
pp. 1658-1661
Author(s):  
Hong Ling Ye ◽  
Yao Ming Li ◽  
Yan Ming Zhang ◽  
Yun Kang Sui

This paper refer to weight as objective and subject to multiple response amplitude of the harmonic excitation. The ICM method is employed for solving the topology optimization problem and dual sequence quadratic programming (DSQP) is effective to solve the algorithm. A numerical example was presented and demonstrated the validity and effectiveness of the ICM method.


2013 ◽  
Vol 2013 ◽  
pp. 1-18
Author(s):  
Tie Jun ◽  
Sui Yun-kang

This paper concentrates on finding the optimal distribution for continuum structure such that the structural weight with stress constraints is minimized where the physical design domain is discretized by finite elements. A novel Independent-Continuous-Mapping (ICM) method is proposed to convert equivalently the binary design variables which is used to indicate material or void in the various elements to independent continuous design variables. Moreover, three smooth mappings about weight, stiffness, and stress of the structural elements are introduced to formulate the objective function based on the so-called concepts of polish function and weighting filter function. A new general continuous approach for topology optimization is given which can eliminate the stress singularity phenomena more efficiently than the traditionalε-relaxation method, and an alternative strain energy method for the stress constraints is proposed to overcome the difficulty in stress sensitivity analyses. Mathematically, by means of a generalized aggregation KS-like function defined as the parabolic aggregation function, a topology optimization model is formulated with the weight objective and single parabolic global strain energy constraints. The numerical examples demonstrate that the proposed methods effectively remove the stress concentrations and generate black-and-white designs for practically sized problems.


Sign in / Sign up

Export Citation Format

Share Document