rayleigh quotient
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 42)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ze-Tong Li ◽  
Fan-Xu Meng ◽  
Xu-Tao Yu ◽  
Zai-Chen Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jutao Zhao ◽  
Pengfei Guo

The Jacobi–Davidson iteration method is very efficient in solving Hermitian eigenvalue problems. If the correction equation involved in the Jacobi–Davidson iteration is solved accurately, the simplified Jacobi–Davidson iteration is equivalent to the Rayleigh quotient iteration which achieves cubic convergence rate locally. When the involved linear system is solved by an iteration method, these two methods are also equivalent. In this paper, we present the convergence analysis of the simplified Jacobi–Davidson method and present the estimate of iteration numbers of the inner correction equation. Furthermore, based on the convergence factor, we can see how the accuracy of the inner iteration controls the outer iteration.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Kayacan Kestel ◽  
Cédric Peeters ◽  
Jérôme Antoni ◽  
Jan Helsen

Detection of bearing faults is a challenging task since the impulsive pattern of bearing faults often fades into the noise. Moreover, tracking the health conditions of  rotating machinery generally requires the characteristic frequencies of the components of interest, which can be a cumbersome constraint for large industrial applications because of the extensive number of machine components. One recent method proposed in literature addresses these difficulties by aiming to increase the sparsity of the envelope spectrum of the vibration signal via blind filtering (Peeters. et al., 2020). As the name indicates, this method requires no prior knowledge about the machine.  Sparsity measures like Hoyer index, l1/l2 norm, and spectral negentropy are optimized in the blind filtering approach using Generalized Rayleigh quotient iteration. Even though the proposed method has demonstrated a promising performance, it has  only been applied to vibration signals of an academic experimental test rig. This paper focuses on the real-world performance of the sparsity-based blind filtering approach on a complex industrial machine. One of the challenges is to ensure the numerical stability and the convergence of the Generalized Rayleigh quotient optimization. Enhancements are thus made by identifying a quasi-optimal filter parameter range within which blind filtering tackles these issues. Finally, filtering is applied to certain frequency ranges in order to prevent the blind filtering optimization from getting skewed by dominant deterministic healthy signal content. The outcome proves that sparsity-based blind filters are effective in tracking bearing faults on real-world rotating machinery without any prior knowledge of characteristic frequencies.


2021 ◽  
Vol 11 (4) ◽  
pp. 143-159
Author(s):  
Tosporn Prasertsri ◽  
Supin Sartbumrung ◽  
Suneenut Suewongprayoon ◽  
Natdanai Sinsamutpadung ◽  
Jaroon Rungamornrat

This paper presents a simple numerical procedure based upon the projected gradient descent (PGD) and finite element method (FEM) for the shape optimization of laterally restrained columns to attain the maximum elastic buckling load under the specified volumetric constraint. The analysis of the buckling load is achieved via the formulation based on Euler-Bernoulli beam theory, the discretization by the standard finite element technique, and the determination of the least eigenvalue and the corresponding eigenvector via the power method with Rayleigh quotient. In the optimization, the profile of the cross-sectional area of the column is represented by piecewise polynomial interpolation functions. The gradient information and the projection operator required in PGD iterations are obtained explicitly in a closed form. A selected set of results is reported to demonstrate not only the good convergence behavior and accuracy of numerical solutions, but also the capability of the proposed technique to attain the optimal shape of columns for various scenarios.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2436
Author(s):  
Alma Y. Alanis ◽  
Daniel Ríos-Rivera ◽  
Edgar N. Sanchez ◽  
Oscar D. Sanchez

In this paper, we present an impulsive pinning control algorithm for discrete-time complex networks with different node dynamics, using a linear algebra approach and a neural network as an identifier, to synthesize a learning control law. The model of the complex network used in the analysis has unknown node self-dynamics, linear connections between nodes, where the impulsive dynamics add feedback control input only to the pinned nodes. The proposed controller consists of the linearization for the node dynamics and a reorder of the resulting quadratic Lyapunov function using the Rayleigh quotient. The learning part of the control is done with a discrete-time recurrent high order neural network used for identification of the pinned nodes, which is trained using an extended Kalman filter algorithm. A numerical simulation is included in order to illustrate the behavior of the system under the developed controller. For this simulation, a 20-node complex network with 5 different node dynamics is used. The node dynamics consists of discretized versions of well-known continuous chaotic attractors.


2021 ◽  
Vol 150 (4) ◽  
pp. A344-A344
Author(s):  
Allison Kaminski ◽  
James McDaniel
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1194
Author(s):  
Ge Zhang ◽  
Qiong Yang ◽  
Guotong Li ◽  
Jiaxing Leng ◽  
Mubiao Yan

Detection of faults at the incipient stage is critical to improving the availability and continuity of satellite services. The application of a local optimum projection vector and the Kullback–Leibler (KL) divergence can improve the detection rate of incipient faults. However, this suffers from the problem of high time complexity. We propose decomposing the KL divergence in the original optimization model and applying the property of the generalized Rayleigh quotient to reduce time complexity. Additionally, we establish two distribution models for subfunctions F1(w) and F3(w) to detect the slight anomalous behavior of the mean and covariance. The effectiveness of the proposed method was verified through a numerical simulation case and a real satellite fault case. The results demonstrate the advantages of low computational complexity and high sensitivity to incipient faults.


2021 ◽  
pp. 13-25
Author(s):  
Nguyen Tien Khiem ◽  
Nguyen Minh Tuan ◽  
Pham Thi Ba Lien

Sign in / Sign up

Export Citation Format

Share Document