Fail-safe topology optimization of continuum structures with fundamental frequency constraints based on the ICM method

2020 ◽  
Vol 36 (5) ◽  
pp. 1065-1077 ◽  
Author(s):  
Jia-Zheng Du ◽  
Fan-Wei Meng ◽  
Yun-Hang Guo ◽  
Yun-Kang Sui
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yingjia Wang ◽  
Dongchen Qin ◽  
Ranran Wang ◽  
Heming Zhao

Herein, to improve the dynamic performance of continuum structures, their fundamental frequency is optimized using the topology optimization method. This helps to obtain the best material distribution in the design space and increases the fundamental frequency of the structure higher than the disturbance frequency. Using the variable density method, the dynamic topology optimization model of a long-span continuum structure is built based on the density interpolation model of a solid isotropic material with penalization (SIMP). The goal of this optimization is to maximize the first-order eigenvalue, and the optimization constraint is that the total volume of the structure is smaller than the given value. To improve the efficiency and accuracy of the model, sensitivity filtering is adopted to avoid numerical instability during calculation. Moreover, the optimization criterion method is used to iteratively solve the optimization results. Finally, the structural topology optimization method is implemented on the long-span single beam of a bridge crane at a construction site. The results show that the natural frequency of the structure is increased and the modal characteristics are improved, which lays the foundation for further optimization and dynamic-response analysis.


2021 ◽  
Vol 37 ◽  
pp. 270-281
Author(s):  
Fangfang Yin ◽  
Kaifang Dang ◽  
Weimin Yang ◽  
Yumei Ding ◽  
Pengcheng Xie

Abstract In order to solve the application restrictions of deterministic-based topology optimization methods arising from the omission of uncertainty factors in practice, and to realize the calculation cost control of reliability-based topology optimization. In consideration of the current reliability-based topology optimization methods of continuum structures mainly based on performance indexes model with a power filter function. An efficient probabilistic reliability-based topology optimization model that regards mass and displacement as an objective function and constraint is established based on the first-order reliability method and a modified economic indexes model with a composite exponential filter function in this study. The topology optimization results obtained by different models are discussed in relation to optimal structure and convergence efficiency. Through numerical examples, it can be seen that the optimal layouts obtained by reliability-based models have an increased amount of material and more support structures, which reveals the necessity of considering uncertainty in lightweight design. In addition, the reliability-based modified model not only can obtain lighter optimal structures compared with traditional economic indexes models in most circumstances, but also has a significant advantage in convergence efficiency, with an average increase of 44.59% and 64.76% compared with the other two reliability-based models. Furthermore, the impact of the reliability index on the results is explored, which verifies the validity of the established model. This study provides a theoretical reference for lightweight or innovative feature-integrated design in engineering applications.


Sign in / Sign up

Export Citation Format

Share Document