Solvability and Optimal Controls of a Fractional Impulsive Stochastic Partial Integro-Differential Equation with State-Dependent Delay

2017 ◽  
Vol 155 (1) ◽  
pp. 57-84 ◽  
Author(s):  
Zuomao Yan ◽  
Fangxia Lu
2018 ◽  
Vol 36 (2) ◽  
pp. 603-622 ◽  
Author(s):  
Yong Zhou ◽  
S Suganya ◽  
M Mallika Arjunan ◽  
B Ahmad

Abstract In this paper, the problem of approximate controllability for non-linear impulsive fractional integro-differential equation with state-dependent delay in Hilbert spaces is investigated. We study the approximate controllability for non-linear impulsive integro-differential systems under the assumption that the corresponding linear control system is approximately controllable. By utilizing the methods of fractional calculus, semigroup theory, fixed-point theorem coupled with solution operator, sufficient conditions are formulated and proved. Finally, an example is provided to illustrate the proposed theory.


2003 ◽  
Vol 13 (06) ◽  
pp. 807-841 ◽  
Author(s):  
R. Ouifki ◽  
M. L. Hbid

The purpose of the paper is to prove the existence of periodic solutions for a functional differential equation with state-dependent delay, of the type [Formula: see text] Transforming this equation into a perturbed constant delay equation and using the Hopf bifurcation result and the Poincaré procedure for this last equation, we prove the existence of a branch of periodic solutions for the state-dependent delay equation, bifurcating from r ≡ 0.


Sign in / Sign up

Export Citation Format

Share Document