Time Dependent Radiative Transfer Problems in a One-Dimensional Medium

Astrophysics ◽  
2021 ◽  
Author(s):  
A. G. Nikoghossian
2002 ◽  
Vol 124 (4) ◽  
pp. 674-684 ◽  
Author(s):  
Zekeriya Altac¸

A high order approximation, the SKN method—a mnemonic for synthetic kernel—is proposed for solving radiative transfer problems in participating medium. The method relies on approximating the integral transfer kernel by a sum of exponential kernels. The radiative integral equation is then reducible to a set of coupled second-order differential equations. The method is tested for one-dimensional plane-parallel participating medium. Three quadrature sets are proposed for the method, and the convergence of the method with the proposed sets is explored. The SKN solutions are compared with the exact, PN, and SN solutions. The SK1 and SK2 approximations using quadrature Set-2 possess the capability of solving radiative transfer problems in optically thin systems.


2008 ◽  
Vol 130 (10) ◽  
Author(s):  
Qiang Cheng ◽  
Huai-Chun Zhou ◽  
Zhi-Feng Huang ◽  
Yong-Lin Yu ◽  
De-Xiu Huang

A time-dependent distribution of ratios of energy scattered by the medium or reflected by the boundary surfaces (DRESOR) method was proposed to solve the transient radiative transfer in a one-dimensional slab. This slab is filled with an absorbing, scattering, and nonemitting medium and exposed to a collimated, incident serial pulse with different pulse shapes and pulse widths. The time-dependent DRESOR values, representing the temporal response of an instantaneous, incident pulse with unit energy and the same incident direction as that for the serial pulse, were proposed and calculated by the Monte Carlo method. The temporal radiative intensity inside the medium with high directional resolution can be obtained from the time-dependent DRESOR values. The transient incident radiation results obtained by the DRESOR method were compared to those obtained with the Monte Carlo method, and good agreements were achieved. Influences of the pulse shape and width, reflectivity of the boundary, scattering albedo, optical thickness, and anisotropic scattering on the transient radiative transfer, especially the temporal response along different directions, were investigated.


A number of algorithms for solving one-dimensional monochromatic radiative transfer problems were summarized in Grant & Hunt (1968 b ). This paper is concerned with the mathematical proofs of existence and non-negativity of the solutions, together with the stability of the algorithms. These results may be obtained with very general assumptions, and permit us to use the algorithms in practical problems with confidence. Numerical evi­dence is presented to support the main conclusions.


Sign in / Sign up

Export Citation Format

Share Document