incident radiation
Recently Published Documents


TOTAL DOCUMENTS

533
(FIVE YEARS 123)

H-INDEX

39
(FIVE YEARS 5)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Z. Ebrahimpour ◽  
Seyyed Ali Farshad ◽  
M. Sheikholeslami

Purpose This paper scrutinizes exergy loss and hydrothermal analysis of Linear Fresnel Reflector (LFR) unit by means of FLUENT. Several mirrors were used to guide the solar radiation inside the receiver, which has parabolic shape. Radiation model was used to simulate radiation mode. Design/methodology/approach Heat losses from receiver should be minimized to reach the optimized design. Outputs were summarized as contours of incident radiation, isotherm and streamline. Outputs were classified in terms of contours and plots to depict the influence of temperature of hot wall, wind velocity and configurations on performance of Linear Fresnel Reflector (LFR) based on thermal and exergy treatment. Four arrangements for LFR units are considered and all of them have same height. Findings Greatest Nu and Ex can be obtained for case D due to the highest heat loss from hot wall. Share of radiative heat flux relative to total heat flux is about 94% for case D. In case D when Tr = 0.388, As hext rises from 5 to 20, Nutotal enhances about 11.42% when Tr = 0.388. By selecting case D instead of case A, Ex rises about 16.14% for lowest Tr. Nutotal and Ex of case D augment by 3.65 and 6.23 times with rise of Tr when hext = 5. To evaluate the thermal performance (ηth) of system, absorber pipe was inserted below the parabolic reflector and 12 mirrors were used above the ground. The outputs revealed that ηth decreases about 14.31% and 2.54% with augment of Tin and Q if other factors are minimum. Originality value This paper scrutinizes exergy loss and hydrothermal analysis of LFR unit by means of finite volume method. Several mirror used to guide the solar radiation inside the receiver, which has parabolic shape. DO model was used to simulate radiation mode. Heat losses from receiver should be minimized to reach the optimized design. Outputs were summarized as contours of incident radiation, isotherm and streamline.


2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Shahid Amjad

There is potential for harnessing renewable energy from coastal waves and tides, from the coastal and offshore areas of Pakistan. The Sindh coast is a complex creek network located in the 170 km of the Indus deltaic area. The flood and ebb of tides in and out of these creeks have a high velocity of 0.2–0.5 m/s. NIO Pakistan has conducted preliminary feasibility surveys for energy extraction from the Indus deltaic creek system. The 17 major creeks have the capacity to produce estimated energy of approximately 1100 MW. The seawater ingresses inland at some places up to 80 km due to the tidal fluctuation, which is favorable for energy extraction from tidal currents in coastal Sindh. In total, 71% of our Planet Earth is covered by the oceans. The oceans are massive collectors of solar radiation received from the sun. The oceans store the potential energy that is received in the form of incident radiation from the sun that generates thermal energy. A 10 °C temperature difference can be harnessed between the surface and bottom water, using a working fluid. The thermal difference absorbed by the oceans can be converted into electricity through ocean thermal energy conversion (OTEC). The ocean tidal and wave energy has advantages over energy produced using different fossil fuels; there are also several benefits of using renewable sources of ocean energy. Viability of ocean energy in Pakistan is discussed in this paper.


Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 10-14
Author(s):  
A. A. Kuraptsova ◽  
A. L. Danilyuk

Silicon/zinc oxide heterostructures have shown themselves to be promising for use in photovoltaics. This paper presents the results of modeling the charge properties and currents in a Si/nanosized ZnO particle with different types of conductivity under sunlight irradiation. The simulation was carried out using the Comsol Multiphysics software package. The energy diagrams of the investigated heterostructures were plotted, the charge properties and currents flowing in the structure were investigated, the dependences of the rate of generation of charge carriers on wavelength on the surfaces of silicon, zinc oxide, and at the interface between silicon and zinc oxide, the rate of recombination of charge carriers at various wavelengths of incident radiation was obtained. The regularities of the influence of wavelength of the incident radiation on the charge density and electric potential on the surface of heterostructures have been established. It is shown that the potential on the surface of the p-Si / n-ZnO heterostructure is positive, depends on the wavelength of the incident radiation and reaches the maximum of 0.68 V. For other structures, it is negative and does not depend on the wavelength: n-Si / p-ZnO –0.78 V, p-Si / p-ZnO –0.65 V, n-Si / n-ZnO –0.25 V.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8209
Author(s):  
Julian Schumann ◽  
Bert Schiebler ◽  
Federico Giovannetti

In order to increase the overall solar energy gain of evacuated tube collectors, rear-side reflectors are used. In this way, the otherwise unused incident radiation between the tubes can be reflected back to the absorber, and the performance of the collector can be improved. In this paper, the use of a low-cost, diffusely reflecting, trapezoidal roof covering made from a galvanized metal sheet is investigated and compared to a high-quality, specularly reflecting plane reflector made of aluminum. For this purpose, ray-tracing analysis and TRNSYS simulations were carried out. In the ray-tracing analysis, the experimentally determined zero-loss collector efficiency η0 as well as the incident angle modifiers for each reflector can be reproduced with an error lower than 7.5%. Thermal system simulations show that the performance of both reflectors is comparable. The use of the low-cost reflector leads to an increase in annual collector output of around 30% compared to an increase with the specular reflector of around 33%. Considering a typical domestic hot water system, both reflectors enable an increase in the solar annual yield of approx. 11%.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3207
Author(s):  
Alexandra V. Galeeva ◽  
Dmitry A. Belov ◽  
Aleksei S. Kazakov ◽  
Anton V. Ikonnikov ◽  
Alexey I. Artamkin ◽  
...  

Topological crystalline insulators form a class of semiconductors for which surface electron states with the Dirac dispersion relation are formed on surfaces with a certain crystallographic orientation. Pb1−xSnxTe alloys belong to the topological crystalline phase when the SnTe content x exceeds 0.35, while they are in the trivial phase at x < 0.35. For the surface crystallographic orientation (111), the appearance of topologically nontrivial surface states is expected. We studied the photoelectromagnetic (PEM) effect induced by laser terahertz radiation in Pb1−xSnxTe films in the composition range x = (0.11–0.44), with the (111) surface crystallographic orientation. It was found that in the trivial phase, the amplitude of the PEM effect is determined by the power of the incident radiation, while in the topological phase, the amplitude is proportional to the flux of laser radiation quanta. A possible mechanism responsible for the effect observed presumes damping of the thermalization rate of photoexcited electrons in the topological phase and, consequently, prevailing of electron diffusion, compared with energy relaxation.


2021 ◽  
Author(s):  
Vl A Margulis ◽  
E E Muryumin

Abstract The optical reflection, transmission and absorption properties of borophene, a newly discovered two-dimensional material with tilted anisotropic Dirac cones, are explored within a simple electronic band structure model of 8-Pmmn borophene, proposed by Zabolotskiy and Lozovik (2016 Phys. Rev. B 94 165403). It is assumed that the borophene layer is deposited on a dielectric substrate, such as Al2O3, and that the borophene's electron density is controlled by an external gate voltage. The reflectance, transmittance and absorbance of the borophene layer, the conduction band of which is filled with electrons up to the Fermi level, are calculated against the frequency of the incident radiation, as well as on the angle of its incidence on the layer. Considered are the two principal cases of the incident radiation polarization either parallel to or normal to the plane of incidence. We reveal that the optical characteristics of 8-Pmmn borophene are distinctly different for the above two cases at all angles of radiation incidence, excepting the grazing incidence, for which the borophene layer is found to behave like a mirror regardless of the wave polarization. The results obtained indicate the possibility of visualizing the borophene layer deposited on a dielectric substrate by observing the minimum reflectivity of this layer at a certain angle incidence (called the quasi-Brewster angle) of the p-polarized radiation, which may differ by a value of about ten degrees from the Brewster angle of the substrate.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022071
Author(s):  
V V Yatsyshen

Abstract The article presents the results of the analysis of the angular spectra of the ellipsometric parameters of the reflected wave when a circularly polarized light wave is incident on an anisotropic plate. The given dependences show a very high sensitivity of the ellipsometric parameters of the reflected light on the angle of incidence and the angle between the optical axis and the normal to the plate boundary. The energy reflection spectra themselves show much less variability when these parameters change. It should be especially emphasized the nature of the change in the ellipsometric angle Δ, which is responsible for the type of elliptical polarization - when Δ> 0, the polarization is left-handed, and when Δ <0, it is right-handed. It is shown that a thin anisotropic plate at certain angles can serve as a polarization converter of the incident radiation. The ellipsometry parameter ρ characterizes the degree of compression of the ellipse - when ρ = 1, the ellipse is transformed into a circle, and the light is circularly polarized in this case. Thus, a thin anisotropic plate can not only convert left-handed polarization to right-handed, but it can also control the very shape of the polarization ellipse. Such a plate can be used in conjunction with a layered medium, for example, a one-dimensional photonic crystal, to control the polarization of the incident circularly polarized light.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012039
Author(s):  
D V Fateev ◽  
O V Polischuk ◽  
M Yu Morozov ◽  
K V Mashinsky ◽  
I M Moiseenko ◽  
...  

Abstract Weak plasmon modes in periodic structures with a two-dimensional electron gas without an inversion center are studied theoretically. The asymmetry of the electric field and Fourier harmonics of weak plasmon modes can lead to the excitation of a travelling plasmon by an electromagnetic wave normally incident on the structure and to the appearance of nonlinear effects leading to the rectification of the incident radiation. The low radiation damping of weak plasmon modes can be used to increase the efficiency of terahertz plasmon amplifiers.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1258
Author(s):  
Daniele Maria Trucchi ◽  
Paolo Ascarelli

The absorbers method is here applied by interposing filters of variable thickness between the X-ray source and a detector so to attenuate the radiation intensity by using the attenuation coefficient as a selective photon energy operator. The analysis of the signal provided by a polycrystalline diamond thin film detector exposed to the energy-selectively-attenuated X-ray beam was used for the reconstruction of the radiation spectrum. The 50 μm thick diamond detector achieves conditions of linear response to the dose rate of the incident radiation (linearity coefficient of 0.997 ± 0.003) for a bias voltage ≥90 V, corresponding to an electric field ≥1.8 × 104 V/cm. Once the absorbers method is applied, only the detector signal linearity to dose rate allows reconstructing the source X-ray bremsstrahlung spectrum with sufficiently high accuracy.


2021 ◽  
Vol 10 (3) ◽  
pp. 1-6
Author(s):  
J. K. Hamilton ◽  
I. R. Hooper ◽  
C. R. Lawrence

In recent years there has been a large body of work investigating periodic metasurface microwave absorbers. However, surprisingly few investigations have focused on the absorption performance of similar non-periodic designs. In this work, the electromagnetic response of a large area (310 mm x 310 mm) microwave absorber that lacks a global periodicity is experimentally studied. The top metallic layer of the ultra-thin (0.3 mm) absorber is structured with rectangular patches given by a procedurally generated non-periodic pattern, known as the toothpick sequence. The specular reflectivity of both p-polarised and s-polarised incident radiation shows coupling to an additional low frequency mode when compared to a standard square patch periodic absorber. To further explore the coupling efficiency of such non-periodic absorbers, finite element models were used to investigate the influence of increasing sample size.


Sign in / Sign up

Export Citation Format

Share Document