scholarly journals Succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism: an update on pharmacological and enzyme-replacement therapeutic strategies

2018 ◽  
Vol 41 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Kara R. Vogel ◽  
Garrett R. Ainslie ◽  
Dana C. Walters ◽  
Alice McConnell ◽  
Sameer C. Dhamne ◽  
...  
2021 ◽  
pp. 088307382199300
Author(s):  
Henry Hing Cheong Lee ◽  
Phillip L. Pearl ◽  
Alexander Rotenberg

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare inborn metabolic disorder caused by the functional impairment of SSADH (encoded by the ALDH5A1 gene), an enzyme essential for metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). In SSADHD, pathologic accumulation of GABA and its metabolite γ-hydroxybutyrate (GHB) results in broad spectrum encephalopathy including developmental delay, ataxia, seizures, and a heightened risk of sudden unexpected death in epilepsy (SUDEP). Proof-of-concept systemic SSADH restoration via enzyme replacement therapy increased survival of SSADH knockout mice, suggesting that SSADH restoration might be a viable intervention for SSADHD. However, before testing enzyme replacement therapy or gene therapy in patients, we must consider its safety and feasibility in the context of early brain development and unique SSADHD pathophysiology. Specifically, a profound use-dependent downregulation of GABAA receptors in SSADHD indicates a risk that any sudden SSADH restoration might diminish GABAergic tone and provoke seizures. In addition, the tight developmental regulation of GABA circuit plasticity might limit the age window when SSADH restoration is accomplished safely. Moreover, given SSADH expressions are cell type–specific, targeted instead of global restoration might be necessary. We therefore describe 3 key parameters for the clinical readiness of SSADH restoration: (1) rate, (2) timing, and (3) cell type specificity. Our work focuses on the construction of a novel SSADHD mouse model that allows “on-demand” SSADH restoration for the systematic investigation of these key parameters. We aim to understand the impacts of specific SSADH restoration protocols on brain physiology, accelerating bench-to-bedside development of enzyme replacement therapy or gene therapy for SSADHD patients.


2021 ◽  
pp. 088307382110283
Author(s):  
Mousumi Bose ◽  
Jean-Baptiste Roullet ◽  
K. Michael Gibson ◽  
William B. Rizzo ◽  
Hana M. Mansur ◽  
...  

Succinic semialdehyde dehydrogenase deficiency (SSADHD), a rare disorder of GABA metabolism, presents with significant neurodevelopmental morbidity. Although there is a growing interest in the concept of quality of life through patient reports as a meaningful outcome in rare disease clinical trials, little is known about the overall impact of SSADHD from the patient/family perspective. The purpose of this study was to determine issues related to quality of life and patient/family experience through a focus group discussion with family caregivers of patients with SSADHD. The discussion included the input of 5 family caregivers, and highlighted concerns related to physical function, cognitive and intellectual function, psychological and behavioral function, social function, and family impact. These themes represent appropriate starting points in the development of a quality-of-life survey that may serve as a meaningful clinical tool in future studies of SSADHD.


2021 ◽  
pp. 088307382098774
Author(s):  
Dana C. Walters ◽  
Regan Lawrence ◽  
Trevor Kirby ◽  
Jared T. Ahrendsen ◽  
Matthew P. Anderson ◽  
...  

This study has extended previous metabolic measures in postmortem tissues (frontal and parietal lobes, pons, cerebellum, hippocampus, and cerebral cortex) obtained from a 37-year-old male patient with succinic semialdehyde dehydrogenase deficiency (SSADHD) who expired from SUDEP (sudden unexplained death in epilepsy). Histopathologic characterization of fixed cortex and hippocampus revealed mild to moderate astrogliosis, especially in white matter. Analysis of total phospholipid mass in all sections of the patient revealed a 61% increase in cortex and 51% decrease in hippocampus as compared to (n = 2-4) approximately age-matched controls. Examination of mass and molar composition of major phospholipid classes showed decreases in phospholipids enriched in myelin, such as phosphatidylserine, sphingomyelin, and ethanolamine plasmalogen. Evaluation of gene expression (RT2 Profiler PCR Arrays, GABA, glutamate; Qiagen) revealed dysregulation in 14/15 GABAA receptor subunits in cerebellum, parietal, and frontal lobes with the most significant downregulation in ∊, θ, ρ1, and ρ2 subunits (7.7-9.9-fold). GABAB receptor subunits were largely unaffected, as were ionotropic glutamate receptors. The metabotropic glutamate receptor 6 was consistently downregulated (maximum 5.9-fold) as was the neurotransmitter transporter (GABA), member 13 (maximum 7.3-fold). For other genes, consistent dysregulation was seen for interleukin 1β (maximum downregulation 9.9-fold) and synuclein α (maximal upregulation 6.5-fold). Our data provide unique insight into SSADHD brain function, confirming astrogliosis and lipid abnormalities previously observed in the null mouse model while highlighting long-term effects on GABAergic/glutamatergic gene expression in this disorder.


Sign in / Sign up

Export Citation Format

Share Document