scholarly journals A Neural Network Approach to Value R&D Compound American Exchange Option

Author(s):  
Giovanni Villani

AbstractIn this paper we show as the neural network methodology, coupled with the Least Squares Monte Carlo approach, can be very helpful in valuing R&D investment opportunities. As it is well known, R&D projects are made in a phased manner, with the commencement of subsequent phase being dependent on the successful completion of the preceding phase. This is known as a sequential investment and therefore R&D projects can be considered as compound options. In addition, R&D investments often involve considerable cost uncertainty so that they can be viewed as an exchange option, i.e. a swap of an uncertain investment cost for an uncertain gross project value. Finally, the production investment can be realized at any time before the maturity date, after that the effects of R&D disappear. Consequently, an R&D project can be considered as a compound American exchange option. In this context, the Least Squares Monte Carlo method is a powerful and flexible tool for capital budgeting decisions and for valuing American-type options. But, using the simulated values as “targets”, the implementation of a neural network allows to extend the results for any R&D valuation and to abate the waiting time of Least Squares Monte Carlo simulation.

Risks ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 116
Author(s):  
Anne-Sophie Krah ◽  
Zoran Nikolić ◽  
Ralf Korn

The least-squares Monte Carlo method has proved to be a suitable approximation technique for the calculation of a life insurer’s solvency capital requirements. We suggest to enhance it by the use of a neural network based approach to construct the proxy function that models the insurer’s loss with respect to the risk factors the insurance business is exposed to. After giving a mathematical introduction to feed forward neural networks and describing the involved hyperparameters, we apply this popular form of neural networks to a slightly disguised data set from a German life insurer. Thereby, we demonstrate all practical aspects, such as the hyperparameter choice, to obtain our candidate neural networks by bruteforce, the calibration (“training”) and validation (“testing”) of the neural networks and judging their approximation performance. Compared to adaptive OLS, GLM, GAM and FGLS regression approaches, an ensemble built of the 10 best derived neural networks shows an excellent performance. Through a comparison with the results obtained by every single neural network, we point out the significance of the ensemble-based approach. Lastly, we comment on the interpretability of neural networks compared to polynomials for sensitivity analyses.


2011 ◽  
Vol 47 (15) ◽  
pp. 1689-1695
Author(s):  
M. B. Bakirov ◽  
O. A. Mishulina ◽  
I. A. Kiselev ◽  
I. A. Kruglov

Sign in / Sign up

Export Citation Format

Share Document