scholarly journals Nothing But Gold. Complexities in Terms of Non-difference and Identity

Author(s):  
Alberto Anrò

AbstractBeginning from some passages by Vācaspati Miśra and Bhāskararāya Makhin discussing the relationship between a crown and the gold of which it is made, this paper investigates the complex underlying connections among difference, non-difference, coreferentiality, and qualification qua relations. Methodologically, philological care is paired with formal logical analysis on the basis of ‘Navya-Nyāya Formal Language’ premises and an axiomatic set theory-based approach. This study is intended as the first step of a broader investigation dedicated to analysing causation and transformation in non-difference.

1942 ◽  
Vol 7 (2) ◽  
pp. 65-89 ◽  
Author(s):  
Paul Bernays

The foundation of analysis does not require the full generality of set theory but can be accomplished within a more restricted frame. Just as for number theory we need not introduce a set of all finite ordinals but only a class of all finite ordinals, all sets which occur being finite, so likewise for analysis we need not have a set of all real numbers but only a class of them, and the sets with which we have to deal are either finite or enumerable.We begin with the definitions of infinity and enumerability and with some consideration of these concepts on the basis of the axioms I—III, IV, V a, V b, which, as we shall see later, are sufficient for general set theory. Let us recall that the axioms I—III and V a suffice for establishing number theory, in particular for the iteration theorem, and for the theorems on finiteness.


1971 ◽  
Vol 36 (3) ◽  
pp. 414-432 ◽  
Author(s):  
Peter B. Andrews

In [8] J. A. Robinson introduced a complete refutation procedure called resolution for first order predicate calculus. Resolution is based on ideas in Herbrand's Theorem, and provides a very convenient framework in which to search for a proof of a wff believed to be a theorem. Moreover, it has proved possible to formulate many refinements of resolution which are still complete but are more efficient, at least in many contexts. However, when efficiency is a prime consideration, the restriction to first order logic is unfortunate, since many statements of mathematics (and other disciplines) can be expressed more simply and naturally in higher order logic than in first order logic. Also, the fact that in higher order logic (as in many-sorted first order logic) there is an explicit syntactic distinction between expressions which denote different types of intuitive objects is of great value where matching is involved, since one is automatically prevented from trying to make certain inappropriate matches. (One may contrast this with the situation in which mathematical statements are expressed in the symbolism of axiomatic set theory.).


1993 ◽  
Vol 03 (01) ◽  
pp. 79-99 ◽  
Author(s):  
STUART W. MARGOLIS ◽  
JOHN C. MEAKIN

The relationship between covering spaces of graphs and subgroups of the free group leads to a rapid proof of the Nielsen-Schreier subgroup theorem. We show here that a similar relationship holds between immersions of graphs and closed inverse submonoids of free inverse monoids. We prove using these methods, that a closed inverse submonoid of a free inverse monoid is finitely generated if and only if it has finite index if and only if it is a rational subset of the free inverse monoid in the sense of formal language theory. We solve the word problem for the free inverse category over a graph Γ. We show that immersions over Γ may be classified via conjugacy classes of loop monoids of the free inverse category over Γ. In the case that Γ is a bouquet of X circles, we prove that the category of (connected) immersions over Γ is equivalent to the category of (transitive) representations of the free inverse monoid FIM(X). Such representations are coded by closed inverse submonoids of FIM(X). These monoids will be constructed in a natural way from groups acting freely on trees and they admit an idempotent pure retract onto a free inverse monoid. Applications to the classification of finitely generated subgroups of free groups via finite inverse monoids are developed.


Sign in / Sign up

Export Citation Format

Share Document