Multi-rule Multi-objective Simulated Annealing Algorithm for Straight and U Type Assembly Line Balancing Problems

2006 ◽  
Vol 17 (2) ◽  
pp. 217-232 ◽  
Author(s):  
Adil Baykasoglu
2013 ◽  
Vol 32 (1) ◽  
pp. 238-247 ◽  
Author(s):  
Abdolreza Roshani ◽  
Arezoo Roshani ◽  
Abdolhassan Roshani ◽  
Mohsen Salehi ◽  
Azadeh Esfandyari

2016 ◽  
Vol 25 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Yu-guang Zhong

Hull assembly line balancing has significant impact on performance of shipbuilding system and is usually a multi-objective optimization problem. In this article, the primary objectives of the hull assembly line balancing are to minimize the number of workstations, to minimize the static load balancing index, to minimize the dynamic load balancing index between workstations, and to minimize the multi-station-associated complexity. Because this problem comes under combinatorial optimization category and is non-deterministic polynomial-time hard, an improved genetic algorithm simulated annealing is presented. In genetic algorithm simulated annealing, the task sequence numbers are used as chromosomes, and selection, crossover, and mutation operators only deal with the elements of task set instead of the ones of the problem space. In order to prevent the algorithm appearing early convergence or getting local optimal result, the simulated annealing algorithm is used to deal with the individuals. Meanwhile, the algorithm is embedded with the hierarchical scheduling tactics in order to solve the selection problem on optimal solution in the Pareto-optimal set. A number of benchmark problems are solved to prove the superior efficiency of the proposed algorithm. Finally, a case study of the optimization of a hull assembly line was given to illustrate the feasibility and effectiveness of the method.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wucheng Yang ◽  
Wenming Cheng

Multi-manned assembly lines have been widely applied to the industrial production, especially for large-sized products such as cars, buses, and trucks, in which more than one operator in the same station simultaneously performs different tasks in parallel. This study deals with a multi-manned assembly line balancing problem by simultaneously considering the forward and backward sequence-dependent setup time (MALBPS). A mixed-integer programming is established to characterize the problem. Besides, a simulated annealing algorithm is also proposed to solve it. To validate the performance of the proposed approaches, a set of benchmark instances are tested and the lower bound of the proposed problem is also given. The results demonstrated that the proposed algorithm is quite effective to solve the problem.


Author(s):  
Safiye Turgay

Facility layout design problem considers the departments’ physcial layout design with area requirements in some restrictions such as material handling costs, remoteness and distance requests. Briefly, facility layout problem related to optimization of the layout costs and working conditions. This paper proposes a new multi objective simulated annealing algorithm for solving of the unequal area in layout design. Using of the different objective weights are generated with entropy approach and used in the alternative layout design. Multi objective function takes into the objective function and constraints. The suggested heuristic algorithm used the multi-objective parameters for initialization. Then prefered the entropy approach determines the weight of the objective functions. After the suggested improved simulated annealing approach applied to whole developed model. A multi-objective simulated annealing algorithm is implemented to increase the diversity and reduce the chance of getting layout conditions in local optima.


Sign in / Sign up

Export Citation Format

Share Document