Green IoT primarily focuses on increasing IoT sustainability by reducing the large amount of energy required by IoT devices. Whether increasing the efficiency of these devices or conserving energy, predictive analytics is the cornerstone for creating value and insight from large IoT data. This work aims at providing predictive models driven by data collected from various sensors to model the energy usage of appliances in an IoT-based smart home environment. Specifically, we address the prediction problem from two perspectives. Firstly, an overall energy consumption model is developed using both linear and non-linear regression techniques to identify the most relevant features in predicting the energy consumption of appliances. The performances of the proposed models are assessed using a publicly available dataset comprising historical measurements from various humidity and temperature sensors, along with total energy consumption data from appliances in an IoT-based smart home setup. The prediction results comparison show that LSTM regression outperforms other linear and ensemble regression models by showing high variability (
R
2
) with the training (96.2%) and test (96.1%) data for selected features. Secondly, we develop a multi-step time-series model using the
auto regressive integrated moving average (ARIMA)
technique to effectively forecast future energy consumption based on past energy usage history. Overall, the proposed predictive models will enable consumers to minimize the energy usage of home appliances and the energy providers to better plan and forecast future energy demand to facilitate green urban development.