Active Fault-Tolerant Control for a Quadrotor with Sensor Faults

2017 ◽  
Vol 88 (2-4) ◽  
pp. 449-467 ◽  
Author(s):  
Liguo Qin ◽  
Xiao He ◽  
Rui Yan ◽  
Donghua Zhou
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Raouaa Tayari ◽  
Ali Ben Brahim ◽  
Fayçal Ben Hmida ◽  
Anis Sallami

The present paper addresses the problem of robust active fault tolerant control (FTC) for uncertain linear parameter varying (LPV) systems with simultaneous actuator and sensor faults. First, fault estimation (FE) scheme is designed based on two adaptive sliding mode observers (SMO). Second, using the information of simultaneous system state, actuator, and sensor faults, two active FTC are conceived for LPV systems described with polytopic representation as state feedback control and sliding mode control. The stability of closed-loop systems is guaranteed by mean of H∞ performance; sufficient conditions of the proposed methods are derived in LMIs formulation. The performance effectiveness of FTC design is illustrated using a VTOL aircraft system with both sensor and actuator faults as well as disturbances. In addition, comparative simulations are provided to verify the benefits of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document