Probing the Structures, Stabilities and Electronic Properties of Neutral and Anionic PrSinλ (n = 1–9, λ = 0, − 1) Clusters: Comparison with Pure Silicon Clusters

Author(s):  
Peng Shao ◽  
Zi-Li Zhao ◽  
Hui Zhang ◽  
Ya-Ru Zhao ◽  
Yun Hao Tiandong
Author(s):  
Nadezda A. Borshch ◽  
Sergey I. Kurganskii

Представлены результаты моделирования пространственной структуры и электронных свойств кластеров MeGe16 - и MeGe20 - (Me = Sc, Y, Lu). Рассматривается возможность синтеза  пуллереноподобных кластеров и кластеров с другими типами замкнутых структур. Проведены сравнительные расчеты в рамках теории функционала плотности с использованием базиса SDD и трех различных потенциалов – B3LYP, B3PW91 и PBEPBE. Анализируется влияние выбора потенциала на результаты моделирования пространственной структуры кластеров и их электронного спектра. Оценка адекватности теоретических методов проводится путем сравнения рассчитанных электронных спектров с экспериментальными результатами по фотоэлектронной спектроскопии кластеров.     REFERENCES Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F., Smalley R. E. C60: Buckminsterfullerene. Nature, 1985, v. 318, pp. 162-163. https://doi.org/10.1038/318162a0 Hiura H., Miyazaki, Kanayama T. Formation of Metal-Encapsulating Si Cage Clusters. Phys. Rev. Lett., 2001, v. 86, p. 1733. https://doi.org/10.1103/PhysRev-Lett.86.1733 Wang J., Han J. Geometries, stabilities, and electronic properties of different-sized ZrSin (n=1–16) clusters: A density-functional investigation. Chem. Phys., 2005, v. 123(6), pp. 064306–064321. https://doi.org/10.1063/1.1998887 Guo L.-J., Liu X., Zhao G.-F. Computational investigation of TiSin (n=2–15) clusters by the densityfunctional theory. Chem. Phys., 2007, v. 126(23), pp. 234704–234710.  https://doi.org/10.1063/1.2743412 Li J., Wang G., Yao C., Mu Y., Wan J., Han M. Structures and magnetic properties of SinMn (n=1–15) clusters. Chem. Phys., 2009, v. 130(16), pp. 164514–164522.  https://doi.org/10.1063/1.3123805 Borshch N. A., Berestnev K. S., Pereslavtseva N. S., Kurganskii S. I. Geometric structure and electron spectrum of YSi n− clusters (n = 6–17) Physics of the Solid State, 2014, v. 56(6), pp. 1276–1281. https://doi.org/10.1134/S1063783414060080 Borshch N., Kurganskii S. Geometric structure, electron-energy spectrum, and growth of anionic scandium-silicon clusters ScSin- (n = 6–20). Appl. Phys., 2014, v. 116(12), pp. 124302-1 – 124302-8. https://doi.org/10.1063/1.4896528 Borshch N. A., Pereslavtseva N. S., Kurganskii S. I. Spatial structure and electronic spectrum of TiSi n - Clusters (n = 6–18). Russian Journal of Physical Chemistry A, v. 88(10), pp. 1712–1718. https://doi.org/10.1134/S0036024414100070 Borshch N. A., Pereslavtseva N. S., Kurganskii S. I. Spatial and electronic structures of the germanium-tantalum clusters TaGe n − (n = 8–17). Physics of the Solid State, 2014, vol. 56(11), pp. 2336–2342. https://doi.org/10.1134/S1063783414110055 Huang X., Yang J. Probing structure, thermochemistry, electron affi nity, and magnetic moment of thulium-doped silicon clusters TmSi n (n = 3–10) and their anions with density functional theory. Mol. Model., 2018, v. 24(1), p. 29. https://doi.org/10.1007/s00894-017-3566-7 Zhang, Y., Yang, J., Cheng, L. J. Probing Structure, Thermochemistry, Electron Affi nity and Magnetic Moment of Erbium-Doped Silicon Clusters ErSin (n = 3–10) and Their Anions with Density Functional Theory. Sci., 2018, v. 29(2), pp. 301–311. https://doi.org/10.1007/s10876-018-1336-z Ye T., Luo C., Xu B., Zhang S., Song H., Li G. Probing the geometries and electronic properties of charged Zr2Si n q (n = 1–12, q = ±1) clusters. Chem., 2018, v. 29(1), pp. 139–146.  https://doi.org/10.1007/s11224-17-1011-2 Nguyen M.T., Tran Q. T., Tran V.T. A CASSCF/ CASPT2 investigation on electron detachments from ScSi n − (n = 4–6) clusters. Mol. Model., 2017, v. 23(10), p. 282. https://doi.org/10.1007/s00894-017-3461-2 Liu Y., Jucai Yang J., Cheng L. Structural Stability and Evolution of Scandium-Doped Silicon Clusters: Evolution of Linked to Encapsulated Structures and Its Infl uence on the Prediction of Electron Affi nities for ScSin (n = 4–16) Clusters. Chem., 2018, v. 57(20), pp 12934–12940. https://doi.org/10.1021/acs.inorgchem.8b02159


2020 ◽  
Vol 22 (36) ◽  
pp. 20545-20552
Author(s):  
Yi-Wei Fan ◽  
Huai-Qian Wang ◽  
Hui-Fang Li

The structural, electronic, and bonding properties of LnSin were investigated systematically by SK-DFT.


2006 ◽  
Vol 421 (4-6) ◽  
pp. 534-539 ◽  
Author(s):  
Kiichirou Koyasu ◽  
Minoru Akutsu ◽  
Junko Atobe ◽  
Masaaki Mitsui ◽  
Atsushi Nakajima

2006 ◽  
Vol 05 (01) ◽  
pp. 13-21 ◽  
Author(s):  
YING DAI ◽  
BAIBIAO HUANG ◽  
LIN YU ◽  
SHENGHAO HAN ◽  
DADI DAI

We have studied the effects of surface oxygen and its bond structure on the electronic properties of silicon nanoclusters by means of density functional theory calculations. The results of the energy gap as a function of the nanocluster size in hydrogen-terminated and oxygen-adsorbed silicon clusters provide a well interpretation of several experiments. The nature of electronic and optical properties of silicon nanoclusters has been discussed and attributed to the oxygen in both the Si=O double bond structure and Si–O–Si bridge structure.


2010 ◽  
Vol 82 (3) ◽  
pp. 595-602 ◽  
Author(s):  
Kai Abersfelder ◽  
David Scheschkewitz

An account is given of our efforts in the synthesis of homo- and heterocyclic silanes via occasionally stable unsymmetrically substituted disilene intermediates of the A2Si=Si(A)B type that are accessible from a disila analog of a vinyl lithium. This approach is particularly powerful in the preparation of three-membered rings such as cyclotrisilanes with a residual functionality that can be either electro- or nucleophilic in nature and can even give rise to ring-expanded products with preserved Si=Si moiety. The intermediacy of transient silylenes in some of these transformations is discussed as well as the structural effects of the electronic properties of the residual functional group. The relevance of these studies for the understanding of Si(100) surface annealed species during the epitaxial growth of elemental silicon is pointed out, and the potential of the methodology for the synthesis of unusual polycyclic silicon clusters is noted.


Sign in / Sign up

Export Citation Format

Share Document