Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
Latest Publications


TOTAL DOCUMENTS

189
(FIVE YEARS 172)

H-INDEX

1
(FIVE YEARS 1)

Published By Voronezh State University

2687-0711

Author(s):  
Elena V. Parinova ◽  
Sergey S. Antipov ◽  
Vladimir Sivakov ◽  
Iuliia S. Kakuliia ◽  
Sergey Yu. Trebunskikh ◽  
...  

The present work is related to the microscopic studies of the morphology of the planar and inner part of silicon nanowires arrays before and after immobilization with a natural nanomaterial, Dps protein of bacterial origin. Silicon nanowires were formed by metal-assisted wet chemical etching. To obtain the recombinant protein, Escherichia coli cells were used as excretion strain and purification were carried out using chromatography. The combination of silicon nanowires with protein molecules was carried out by layering at laboratory conditions followed by drying under air. The resulting hybrid material was studied by high-resolution scanning electron microscopy. Studies of the developed surface of the nanowires array were carried out before and after combining with the bioculture. The initial arrays of silicon wireshave a sharp boundaries in the planar part and in the depth of the array, transition layers are not observed. The diameter of the silicon nanowires is about 100 nm, the height is over a micrometer, while the distances between the nanowires are several hundred of nanometers. The pores formed in this way are available for filling with protein during the immobilization of protein.The effectiveness of using the scanning electron microscopy to study the surface morphology of the hybrid material “silicon wires – bacterial protein Dps” has been demonstrated. It is shown that the pores with an extremely developed surface can be combined with a bio-material by deposition deep into cavities. The protein molecules can easily penetrate through whole porous wires matrix array. The obtained results demonstrate the possibility of efficient immobilization of nanoscaled Dps protein molecules into an accessible and controllably developed surface of silicon nanowires.


Author(s):  
Andrey V. Sorokin ◽  
Marina G. Kholyavka ◽  
Maria S. Lavlinskaya

The aim of this work is to synthesise chitosan and N-vinylimidazole graft-copolymers of various compositions and to study the properties of their aqueous solutions.Chitosan and N-vinylimidazole graft-copolymers were obtained by solution polymerisation in the presence of a ceric ammonium nitrate redox initiator. The synthesised graft copolymers were characterised by FTIR to determine their compositions and the grafted side chains of poly-N-vinylimidazole were characterised by gel permeation chromatography to determine their molecular wights and polydispersity indices. It was established that the obtained products are characterised by high values of yield and grafting efficiency and low values of the polydispersity index. It was found that when the content of the N-vinylimidazole links is above 57 wt%, the synthesised graft copolymers are water-soluble. Aqueous solutions of the obtained copolymers were characterised using dynamic light scattering, transmission electron microscopy, and laserDoppler microelectrophoresis. The study showed that macromolecules of graft copolymers in aqueous solutions have stimuli-sensitive properties with respect to the medium reaction and at a concentration above 10–2 wt% are characterised by a tendency to self-association forming core-crown aggregates, the geometry of which depends on the molecular masses of the grafted chains. Associates of macromolecules in solutions are characterised by positive values of the electrokinetic potential, the values of which also depend on the medium reaction. Thus, it was found that the ceric ammonium nitrate initiator allows obtaining chitosan and N-vinylimidazole graft-copolymers showing stimuli-sensitive properties in aqueous solutions and prone to self-association at concentrations above 10–2 wt%.


Author(s):  
Temur T. Muratov

To date, the processes of tunnel ionisation of impurities near the interface between two different semiconductors have been comprehensively studied. The most important parameters of the contact electron states of impurities have been determined. However, the calculated expressions for these parameters have been of local nature, as applied to individual impurities. Meanwhile, it is easy to understand that a number of processes, such as the flow of charge carriers and their diffusion through a heterojunction, are clearly statistical in nature. The same applies to the processes of tunnel ionisation of shallow and/or deep impurities near the interface. A statistical approach to the calculation of the parameters of tunnel ionisation of impurities broadens the opportunities for obtaining fundamental information regarding surface electronstates.The aim of this work was to use a statistical approach to study the effect of the heterointerface on the energy spectrum of shallow and deep centres. For this purpose, the expansion of the reflected quasi-classical wave function within the complete system of spherical harmonics and the subsequent extraction of the zero harmonic amplitude (s-component) was used to estimate the minimum distance from the impurity to the heterobarrier and to specify the limitations of the applicability of the results obtained in other works. The article analyses the conditions of the quasi-classical approximation which are used to estimate the order of the value for the minimum height of the potential barrier (pit).This work (with due consideration given to the minimum distance estimate) presents averaged formulas obtained for the energy shift of the ground state and the lifetime of the quasi-stationary state depending on the distance from the heterobarrier. Some qualitatively new considerations can also be found in the article. The distribution of impurity centres near the heterobarrier is assumed to be uniform. The article discusses the role of electron transitions in causing the buffer field effect for both shallow and deep centres. The focus of the article is on the estimates of various physical parameters characterising electron transitions near the heterobarrier.


Author(s):  
Irina L. Rakityanskaya ◽  
Danil A. Myasnikov ◽  
Anatoly B. Shein

Germanides are an interesting class of two-component systems which consist of metal and germanium. They are similar in their structure with silicides but have the specific properties. The target of the investigation was finding the main anodic electrochemical behaviour mechanisms for magnesium germanide Mn5Ge3 in an Na2SO4 aqueous solution.Electrochemical behaviour of manganese germanide obtained by Czochralski method was investigated by polarization curves and electrochemical impedance spectroscopy methods and accomplished by microscopy data. Individual manganese and germanium were investigated in the same way for comparison. It was established that in the anodic oxidation process germanium is the potential-determining component. The passivation process associated with the formation of surface oxide films was accomplished by the current density oscillations appearing due to the bad adhesion of oxide film to the surface of the sample, its imperfection and discontinuity. The nature of oxide film formed in the polarization process waspartially established. The dependence of the anodic behaviour of the sample on the sulphate concentration was established: in the diluted solutions the passivation occurs at more positive potentials than in the concentrated. This phenomenon can be explained by the different mechanisms of anodic oxidation in the solutions of different concentrations. 


Author(s):  
Tatyana E. Fertikova ◽  
Sergey V. Fertikov ◽  
Ekaterina M. Isaeva ◽  
Vyacheslav A. Krysanov ◽  
Tamara A. Kravchenko

New metal-polymer nanocomposites for deep water deoxygenation have been obtained and studied. A macro- and monoporous sulphocation exchanger with a nanometer pore size was used as the polymer matrix, and the metal was nanodispersed copper deposited in the pores of the matrix. A specific feature of the studied nanocomposites is their sodium ionic form, which eliminates the possibility of the formation of soluble copper oxidation products. The established linear dependence of the copper capacity on the number of cycles of ion-exchange saturation - chemical deposition shows that the process of metal deposition into the pores of the matrix does not have significant obstacles during 10 cycles and contributes to the production of high-capacity samples.The high efficiency and duration of the life cycle of high-capacity copper ion exchanger nanocomposites have been shown. Experimental studies of water deoxygenation in column-type apparatus with a nanocomposite nozzle were confirmed by a theoretical analysis of the process dynamics. Experimental data and theoretical calculations showed the deep level of water deoxygenation had practically unchanged values of pH and electrical conductivity. Residual oxygen can be controlled and does not exceed 3 μg/l (ppb).The hygienic and economic substantiation of the expediency of using the obtained nanocomposites is provided. The necessity of using modern nanocomposite metal-polymer materials for deep water deoxygenation circulating in technological systems was analysed. When using this innovation, the metal components of the distribution facilities will be protected from corrosion and, therefore, the hygienic requirements for the water quality of centralised drinking water supply systems will be ensured. Deep chemical water deoxygenation using copper ion-exchange polymer nanocomposites in sodium formallows solving the problem of the corrosion resistance of metals, ensuring that water meets hygienic requirements on a large scale.The competitive advantage of the considered water deoxygenation system in comparison with the known systems is the rejection of the use of precious metals-catalysts (palladium, platinum), pure hydrogen, and complex design solutions. The proposed new nanocomposite installation for water deoxygenation is characterised by its ease of use and can be built into a filter system for water purification.SWOT analysis of the advantages and disadvantages of the proposed method of water deoxygenation showed that its main advantages are the high oxygen capacity of the nanocomposite, low residual oxygen content (3 ppb (μg/l)) in the water, and ease of operation of the deoxygenator. Calculations of the economic efficiency of the nanocomposite have been carried out. The breakeven point is reached when producing only ~100 l of nanocomposite and a volume of sales ~1,600,000 roubles, above which a profit can be obtained. The payback period for an investment of ~15,000,000 roubles is rather short and will not exceed 2 years.


Author(s):  
Nikolay Yu. Brezhnev ◽  
Andrey V. Kosyakov ◽  
Anastasia V. Steich ◽  
Alexander Yu. Zavrazhnov

The goals of this work are as follows: (а) searching for a method of study of the In – Se system taking into account the specified problems and difficulties, (b) choosing a way for the instrumental implementation of this method, and (c) obtaining experimental evidence that this method and its implementation are promising. The choice of the In – Se system is related to the fact that indium selenides, layered structures and semiconductor phases with stoichiometric vacancies, are promising from the point of view of materials science. This choice is also related to the use of binary precursors for the synthesis of heterostructures based on CIS compounds.We studied the possibility of applying the auxiliary component method using the equilibrium with the participation of indium chloride vapours which were made to contact the condensed phases of the In – Se system. Equilibrium was achieved using high-temperature spectrophotometry of the vapour phase. The experiment had two stages. During the first stage we determined the absorption characteristics of the InCl3 vapour. During the second stage we studied the heterogeneous equilibrium of the unsaturated indium chloride vapour with several phases of the In – Se system. Over the course of the study, we determined the molar attenuation coefficients of the InCl3 vapour and plotted the temperature dependences of the value KP.It was found that the phase composition of the alloys significantly influences the position of the corresponding lines on the KP–T diagram, which proves the possibility of using the suggested auxiliary component method in its specific instrumental (spectrophotometric) implementation in order to study the In – Se system. We also showed the additional possibilities of using this method for plotting T-x diagrams of binary systems in such high-temperature areas where the binary solid phase is in equilibrium with the melt. This application of the method is related to the solubility of a vapour of an auxiliary component (chlorine in the form of indium chlorides) in the melts of binary phases (indium selenides).


Author(s):  
Pavel N. Vasilevsky ◽  
Mikhail S. Savelyev ◽  
Sergey A. Tereshchenko ◽  
Sergey V. Selishchev ◽  
Alexander Yu. Gerasimenko

The constant increase in the power of laser systems and the growth of potential fields for the application of lasers make the problem of protecting sensitive elements of electro-optical systems and visual organs from high-intensity radiation an urgent issue. Modern systems are capable of generating laser radiation in a wide range of wavelengths, durations, and pulse repetition rates. High-quality protection requires the use of a universal limiter capable of attenuating laser radiation, not causing colour distortion, and having a high transmission value when exposed to low-power radiation. For this, dispersed media based on carbon nanotubes with unique physicochemical properties can be used. Such media have constant valuesof their absorption coefficient and refractive index when exposed to low-intensity laser radiation and change their properties only when the threshold value is reached.The aim of this work was the study of the nonlinear optical properties of an aqueous dispersion of single-walled carbon nanotubes exposed to nano- and femtosecond radiation. For the characterization of the studied medium, Z-scan and fixed sample location experiments were used. The optical parameters were calculated using a threshold model based on the radiation transfer equation.As a result of the experiments, it was shown that the aqueous dispersion of single-walled carbon nanotubes is capable of limiting radiation with wavelengths from the visible and near-IR ranges: nano- (532, 1064 nm) and femtosecond (810 nm). A description of nonlinear optical effects was proposed for when a medium is exposed to radiation with a nanosecond duration due to reverse saturable absorption and two-photon absorption. When the sample exposed for a femtosecond duration the main limiting effect is spatial self-phase modulation. The calculated optical parameters can be used to describe the behaviour of dispersions of carbon nanotubes when exposed to radiation with different intensities. The demonstrated effects allow us to conclude that it is promising to use the investigated media as limiters of high-intensity laser radiationin optical systems to protect light-sensitive elements.


Author(s):  
Vladimir S. Chekanov ◽  
Evgeniya V. Kirillova ◽  
Anna V. Kovalenko ◽  
Elena N. Diskaeva

The article describes a mathematical model of self-oscillation in the form of a boundary value problem for a nonlinear system of partial differential equations, with a numerical solution. The numerical results were compared to the experimental data to confirm the adequacy of the model. The model uses the classical system of differential equations of material balance, Nernst-Planck and Poisson equations without simplifications or fitting parameters. The aim of the article was to study the parameters of concentration self-oscillation in a layer of the dispersed phase particles of magnetic fluid at the interface with an electrode in an electric field. For this purpose, we developed a mathematical model, the consistency of which wasconfirmed by the corresponding physical mechanism.As a result of numerical experiments, we found the critical value of the potential jump after which self-oscillation began. We also determined the oscillation growth period and other characteristics of the process. We developed software called AutoWave01 with an intuitive user interface and advanced functionality for the study of self-oscillation in a thin layer of magnetic colloid.


Author(s):  
Georgy S. Bordonskiy

The article discusses a hypothesis put forward by V. A. Tatarchenko and M. E. Perelman. According to it, the first order phase transition during vapour condensation or melt crystallisation (PeTa effect) is accompanied by the appearance of nonthermal radiation of the media. The generally accepted point of view is that the latent heat of phase transformation can only be released in the form of heat. When the authors of the hypothesis tried to prove the existence of the effect of nonthermal radiation and considered the facts confirming it, they did not take into account the peculiarities of the initial and final states of the medium (i.e. their entropy). To clarify the physics of the process of liquid crystallisation and to consider the possibility of nonthermal radiation, we studied the peculiarities of water crystallisation and the formation of ice. This isthe process the authors referred to in order to prove their hypothesis. It was shown that in various experiments, it is necessary to consider both the state (structure) of the initial water samples and the formed ice, which can consist of various crystalline modifications with chaotic packing. These features of initial and final states, i.e. the entropy of water and ice samples in real experiments and under observed natural phenomena, make it more difficult to assess the characteristics of a possible radiation. The entropy of the initial and final states was determined by the procedure of the system preparation and the peculiarities of the phase transition dynamics. Its values depend on macroscopic parameters, as well a s on themicrostructure of the media, the determination of which is a very challenging task in each specific case. In addition, in many cases, we have to deal with metastable media, for which it is necessary to take into account the influence of fluctuations on the process of the phase transition. Therefore, the concepts of equilibrium thermodynamics are not applicable to them. However, these are the media where non-heat radiations may occur in accordance with the laws of self-organisation in nonlinear weakly nonequilibrium objects. This work shows a method for preparing low-entropy medium with its subsequent phase transformation into ice. To do so we conducted an experiment which involved freezing concentrated alcohol in order to obtain deeply supercooled water. It appears that to find the characteristics of the PeTa radiation it is necessary to takeinto account the entropy constraints for each specific case, which will allow assessing the spectrum of possible non-heated radiations and their characteristics.


Author(s):  
Pham Thi Hong Duyen ◽  
Anh Tien Nguyen

In this work, orthoferrite NdFeO3 nanomaterials with particle sizes 20-40 nm have been successfully synthesized via a simple co-precipitation method through the hydrolysis of Nd (III) and Fe (III) cations in hot water with 5% NaOH as a precipitating agent. Single-phase NdFeO3 was generated after calcination of the as-prepared powder at 700, 800, and 900 °C for 1 hour. The UV-Vis spectra at room temperature presented strong absorption in the UV-Vis regions (l = 200–400 nm and 400–600 nm) with small band gap energy (Eg = 2.2÷2.5 eV). The obtained NdFeO3 nanomaterials exhibited a hard ferromagnetic behavior with high coercivity (Hc = 600–1600 Oe).


Sign in / Sign up

Export Citation Format

Share Document