hydrogenated silicon
Recently Published Documents


TOTAL DOCUMENTS

934
(FIVE YEARS 44)

H-INDEX

48
(FIVE YEARS 3)

Author(s):  
Awa Dieye ◽  
El Hadji Abdoulaye Niasse ◽  
Oumar Absatou Niasse ◽  
Alassane Diaw ◽  
Modou Pilor ◽  
...  

In this work, the following materials have been chosen as anti-reflection layer, namely hafnium (HfO2), magnesium fluoride (MgF2), silicon oxynitrides (SiOxNy), silicon oxides (SiOx), silicon nitride (Si3N4) and hydrogenated silicon nitride (SiNx:H). The calculations were made on the basis of values of layer thicknesses and refractive indices that allow the phase and amplitude conditions to be respected and amplitude conditions. Numerical simulations have shown that low reflectivities at the surface of the surface of the plane cell coated with a simple layer, can be obtained. For example, for simple coatings materials based on Si3N4 and HfO2, we obtain a value of reflectivity around 3 and 2 % respectively. The structures with multilayer coatings such as MgF2/SiNx:H/Si, give a reflectivity of around 1 %. Thus, the refraction index of the coating is an important parameter that plays a major parameter that plays a major role in the optical properties of materials. The closer the refractive index is close to the index of the substrate or the layer above the substrate, the higher the reflectivity.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5658
Author(s):  
Nikolett Hegedüs ◽  
Katalin Balázsi ◽  
Csaba Balázsi

Silicon nitride (SiNx) and hydrogenated silicon nitride (SiNx:H) thin films enjoy widespread scientific interest across multiple application fields. Exceptional combination of optical, mechanical, and thermal properties allows for their utilization in several industries, from solar and semiconductor to coated glass production. The wide bandgap (~5.2 eV) of thin films allows for its optoelectronic application, while the SiNx layers could act as passivation antireflective layers or as a host matrix for silicon nano-inclusions (Si-ni) for solar cell devices. In addition, high water-impermeability of SiNx makes it a potential candidate for barrier layers of organic light emission diodes (OLEDs). This work presents a review of the state-of-the-art process techniques and applications of SiNx and SiNx:H thin films. We focus on the trends and latest achievements of various deposition processes of recent years. Historically, different kinds of chemical vapor deposition (CVD), such as plasma enhanced (PE-CVD) or hot wire (HW-CVD), as well as electron cyclotron resonance (ECR), are the most common deposition methods, while physical vapor deposition (PVD), which is primarily sputtering, is also widely used. Besides these fabrication methods, atomic layer deposition (ALD) is an emerging technology due to the fact that it is able to control the deposition at the atomic level and provide extremely thin SiNx layers. The application of these three deposition methods is compared, while special attention is paid to the effect of the fabrication method on the properties of SiNx thin films, particularly the optical, mechanical, and thermal properties.


2021 ◽  
Author(s):  
SUCHETA JUNEJA ◽  
sushil kumar

Abstract Demand for efficient window layer in thin film solar cells with high crystallinity is ever increasing that finds important application in multi-junction/tandem silicon solar cells. Doping of diborane (B2H6) in hydrogenated silicon films using plasma discharge decomposition of silane (SiH4) and (B2H6) gases were analyzed. The boron flow (FB) to silane ratio was varied from 0–0.30. Variation in film characteristics with B2H6 gas-phase ratio were analyzed, and concluded that doping boron induces crystallization in hydrogenated amorphous silicon (a-Si: H) film structure. The Raman and field emission scanning electron spectroscopy (FESEM) confirmed the boron induced crystallinity effect in silicon films at different diborane flow. The results showed that as boron content increases beyond certain ratio, silicon crystallization suppresses and the crystallite sizes were also reduced. From results, it was observed that crystallinity in FB = 0.05 is 79 % and decreases to 77 % when films are slightly higher doped (FB = 0.10) and further decreases when the films were heavily doped. These results validate that boron suppresses silicon crystallization due to local deformations caused by the impurities. Infra-red absorption studies and their analysis also confirm the crystallization in boron doped films with additional band appears at ~ 611 cm− 1. This band is named as boron induced crystallinity mode of vibrational spectra. The estimated hydrogen content (CH) decreases confirmed crystallinity in the silicon structure with boron doping. Further, the energy dispersive spectroscopy (EDX) indicates the presence of boron and other impurities in deposited silicon films. The effect of boron on crystallinity and crystallite size as well as the mechanism were presented in detailed.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6140
Author(s):  
Jan Niklas Haus ◽  
Martin Schwerter ◽  
Michael Schneider ◽  
Marcel Gäding ◽  
Monika Leester-Schädel ◽  
...  

Current research in the field of aviation considers actively controlled high-lift structures for future civil airplanes. Therefore, pressure data must be acquired from the airfoil surface without influencing the flow due to sensor application. For experiments in the wind and water tunnel, as well as for the actual application, the requirements for the quality of the airfoil surface are demanding. Consequently, a new class of sensors is required, which can be flush-integrated into the airfoil surface, may be used under wet conditions—even under water—and should withstand the harsh environment of a high-lift scenario. A new miniature silicon on insulator (SOI)-based MEMS pressure sensor, which allows integration into airfoils in a flip-chip configuration, is presented. An internal, highly doped silicon wiring with “butterfly” geometry combined with through glass via (TGV) technology enables a watertight and application-suitable chip-scale-package (CSP). The chips were produced by reliable batch microfabrication including femtosecond laser processes at the wafer-level. Sensor characterization demonstrates a high resolution of 38 mVV−1 bar−1. The stepless ultra-smooth and electrically passivated sensor surface can be coated with thin surface protection layers to further enhance robustness against harsh environments. Accordingly, protective coatings of amorphous hydrogenated silicon nitride (a-SiN:H) and amorphous hydrogenated silicon carbide (a-SiC:H) were investigated in experiments simulating environments with high-velocity impacting particles. Topographic damage quantification demonstrates the superior robustness of a-SiC:H coatings and validates their applicability to future sensors.


NANO ◽  
2021 ◽  
pp. 2150115
Author(s):  
Tapati Jana ◽  
Romyani Goswami

To develop wide bandgap materials for solar cells and other optoelectronic devices, undoped hydrogenated silicon oxide (SiOx:H) thin films are prepared by conventional radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method. The variation of carbon dioxide dilution ([Formula: see text]) on optoelectronic and structural properties are studied thoroughly by keeping silane and hydrogen gas flow fixed. Surface morphology of the SiOx:H films have been studied by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM). Distinct silicon nanocrystallites of average diameter [Formula: see text] 3–6[Formula: see text]nm embedded uniformly in amorphous SiOx network have been observed in high resolution Transmission Electron Microscopy (HRTEM). From Fourier Transform Infrared spectra (FTIR), it is observed that oxygen content ([Formula: see text]) increases initially with [Formula: see text] and afterwards it decreases. Strong room temperature photoluminescence (PL) peak is obtained for the as-deposited films having lower oxygen content ([Formula: see text]). The origin of room temperature PL spectra and its correlation with [Formula: see text] can be explained by quantum confinement effect (QCE) theory.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1041
Author(s):  
Hwanyeol Park ◽  
Ho Jun Kim

The rapid and uniform growth of hydrogenated silicon (Si:H) films is essential for the manufacturing of future semiconductor devices; therefore, Si:H films are mainly deposited using SiH4-based plasmas. An increase in the pressure of the mixture gas has been demonstrated to increase the deposition rate in the SiH4-based plasmas. The fact that SiH4 more efficiently generates Si2H6 at higher gas pressures requires a theoretical investigation of the reactivity of Si2H6 on various surfaces. Therefore, we conducted first-principles density functional theory (DFT) calculations to understand the surface reactivity of Si2H6 on both hydrogenated (H-covered) Si(001) and Si(111) surfaces. The reactivity of Si2H6 molecules on hydrogenated Si surfaces was more energetically favorable than on clean Si surfaces. We also found that the hydrogenated Si(111) surface is the most efficient surface because the dissociation of Si2H6 on the hydrogenated Si(111) surface are thermodynamically and kinetically more favorable than those on the hydrogenated Si(001) surface. Finally, we simulated the SiH4/He capacitively coupled plasma (CCP) discharges for Si:H films deposition.


2021 ◽  
Vol 10 (2) ◽  
pp. 699-706
Author(s):  
Nji Raden Poespawati ◽  
Rizqy Pratama Rahman ◽  
Junivan Sulistianto ◽  
Retno Wigajatri Purnamaningsih ◽  
Tomy Abuzairi

This paper shows the attempt to increase the performance of triple-junction hydrogenated silicon solar cells with structure nc-Si:H/a-Si:H/a-SiGe:H. The wxAMPS software was used to simulate and optimize the design. In an attempt to increase the performance, an a-SiC:H layer on the p-layer was replaced with an a-Si:H layer and an a-SiGe layer was replaced with a step graded Si1-xGex layer. Then, to achieve the best performing device, we optimized the concentration of germanium and thickness of the step graded Si1-xGex layer. The result shows that the optimum concentration of germanium in the p-i upper layer and i-n lower layer are 0.86 and 0.90, respectively and the optimum thicknesses are 10 nm and 230 nm, respectively. The optimized device performed with an efficiency of 19.08%, adding 3 more percent of efficiency from the original design. Moreover, there is a significant possibility of increasing the efficiency of a triple-junction solar cell by modifying it into a step graded Si1-xGex layer.


Sign in / Sign up

Export Citation Format

Share Document