Optimal Control Problem for Cahn–Hilliard Equations with State Constraint

2014 ◽  
Vol 21 (2) ◽  
pp. 257-272 ◽  
Author(s):  
Jiashan Zheng ◽  
Yifu Wang
2021 ◽  
Vol 5 (3) ◽  
pp. 102
Author(s):  
Fangyuan Wang ◽  
Xiaodi Li ◽  
Zhaojie Zhou

In this paper spectral Galerkin approximation of optimal control problem governed by fractional advection diffusion reaction equation with integral state constraint is investigated. First order optimal condition of the control problem is discussed. Weighted Jacobi polynomials are used to approximate the state and adjoint state. A priori error estimates for control, state, adjoint state and Lagrangian multiplier are derived. Numerical experiment is carried out to illustrate the theoretical findings.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Youjun Xu ◽  
Shu Zhou

We establish the necessary condition of optimality for optimal control problem governed by some pseudoparabolic differential equations involving monotone graphs. Some approximating control process and examples are given.


2016 ◽  
Vol 16 (4) ◽  
pp. 685-702
Author(s):  
Markus Klein ◽  
Andreas Prohl

AbstractWe consider an optimal control problem subject to the thin-film equation. The PDE constraint lacks well-posedness for general right-hand sides due to possible degeneracies; state constraints are used to circumvent this problematic issue and to ensure well-posedness. Necessary optimality conditions for the optimal control problem are then derived. A convergent multi-parameter regularization is considered which addresses both, the possibly degenerate term in the equation and the state constraint. Some computational studies are then reported which evidence the relevant role of the state constraint, and motivate proper scalings of involved regularization and numerical parameters.


Sign in / Sign up

Export Citation Format

Share Document