adaptive finite element
Recently Published Documents





2021 ◽  
Vol 8 (6) ◽  
pp. 967-973
Collins Olusola Akeremale ◽  
Oluwasegun Adeyemi Olaiju ◽  
Su Hoe Yeak

This article considered the traditional finite element method (FEM) and adaptive finite element method (FEM) for the numerical solution of the one-dimensional boundary value problems. We established the preference or the superiority of the h-adaptive FEM to traditional FEM in high gradient problems in terms of accuracy and cost of computation. Numerical examples which confirm the performance and adaptability of the h-adaptive method over the traditional finite element method and the high accuracy of the numerical solution are presented. Detailed error analysis of linear elements was also discussed. In conclusion, h-adaptive FEM is recommended for complex systems with high gradient problems.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Yongliang Wang ◽  
Jianhui Wang

PurposeThis study presents a novel hp-version adaptive finite element method (FEM) to investigate the high-precision eigensolutions of the free vibration of moderately thick circular cylindrical shells, involving the issues of variable geometrical factors, such as the thickness, circumferential wave number, radius and length.Design/methodology/approachAn hp-version adaptive finite element (FE) algorithm is proposed for determining the eigensolutions of the free vibration of moderately thick circular cylindrical shells via error homogenisation and higher-order interpolation. This algorithm first develops the established h-version mesh refinement method for detecting the non-uniform distributed optimised meshes, where the error estimation and element subdivision approaches based on the superconvergent patch recovery displacement method are introduced to obtain high-precision solutions. The errors in the vibration mode solutions in the global space domain are homogenised and approximately the same. Subsequently, on the refined meshes, the algorithm uses higher-order shape functions for the interpolation of trial displacement functions to reduce the errors quickly, until the solution meets a pre-specified error tolerance condition. In this algorithm, the non-uniform mesh generation and higher-order interpolation of shape functions are suitable for addressing the problem of complex frequencies and modes caused by variable structural geometries.FindingsNumerical results are presented for moderately thick circular cylindrical shells with different geometrical factors (circumferential wave number, thickness-to-radius ratio, thickness-to-length ratio) to demonstrate the effectiveness, accuracy and reliability of the proposed method. The hp-version refinement uses fewer optimised meshes than h-version mesh refinement, and only one-step interpolation of the higher-order shape function yields the eigensolutions satisfying the accuracy requirement.Originality/valueThe proposed combination of methodologies provides a complete hp-version adaptive FEM for analysing the free vibration of moderately thick circular cylindrical shells. This algorithm can be extended to general eigenproblems and geometric forms of structures to solve for the frequency and mode quickly and efficiently.

Gang Bao ◽  
Xue Jiang ◽  
Peijun Li ◽  
Xiaokai Yuan

Consider the scattering of a time-harmonic elastic plane wave by a bi-periodic rigid surface. The displacement of elastic wave motion is modeled by the three-dimensional Navier equation in an unbounded domain above the surface. Based on the Dirichlet-to-Neumann (DtN) operator, which is given as an infinite series, an exact transparent boundary condition is introduced and the scattering problem is formulated equivalently into a boundary value problem in a bounded domain. An a posteriori error estimate based adaptive finite element DtN method is proposed to solve the discrete variational problem where the DtN operator is truncated into a finite number of terms. The a posteriori error estimate takes account of the finite element approximation error and the truncation error of the DtN operator which is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to illustrate the effectiveness of the proposed method.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5224
Abdulnaser M. Alshoaibi ◽  
Yahya Ali Fageehi

This study presents a developed finite element code written by Visual Fortran to computationally model fatigue crack growth (FCG) in arbitrary 2D structures with constant amplitude loading, using the linear elastic fracture mechanics (LEFM) concept. Accordingly, optimizing an FCG analysis, it is necessary to describe all the characteristics of the 2D model of the cracked component, including loads, support conditions, and material characteristics. The advancing front method has been used to generate the finite element mesh. The equivalent stress intensity factor was used as the onset criteria of crack propagation, since it is the main significant parameter that must be precisely predicted. As such, a criterion premised on direction (maximum circumferential stress theory) was implemented. After pre-processing, the analysis continues with incremental analysis of the crack growth, which is discretized into short straight segments. The adaptive mesh finite element method was used to perform the stress analysis for each increment. The displacement extrapolation technique was employed at each crack extension increment to compute the SIFs, which are then assessed by the maximum circumferential stress theory to determine the direction of the crack growth and predict the fatigue life as a function of crack length using a modified form of Paris’ law. The application examples demonstrate the developed program’s capability and performance.

2021 ◽  
Vol 11 (17) ◽  
pp. 8120
Mohd. Ahmed ◽  
Devinder Singh ◽  
Saeed AlQadhi ◽  
Majed A. Alrefae

The Zienkiewicz–Zhu (ZZ) super-convergent patch recovery technique based on a node neighborhood patch configuration is used most widely for recovery of the stress field of a finite element analysis. In this study, an improved ZZ recovery technique using element neighborhood patch configuration is proposed. The improved recovery procedure is based on recovery of the stress field in the least-squares sense over an element patch that consists of the union of the elements surrounding the element under consideration. The proposed patch configuration provides more sampling points and improves the performance of the standard ZZ recovery technique. The effectiveness and reliability of the improved ZZ recovery approach is demonstrated through plane elastic and plastic plate problems. The problem domain is discretized with triangular and quadrilateral elements of different sizes. A comparison of the quality of error estimation using the ZZ recovery of derivative field and recovery of the displacement field using similar element neighborhood patch configurations is also presented. The numerical results show that the ZZ recovery technique and the displacement recovery technique, using a modified patch configuration, yield better results, convergence rate, and effectivity as compared with the standard ZZ super-convergent patch recovery technique. It is concluded that the improved ZZ recovery technique-based adaptive finite element analysis is very effective for converging a predefined accuracy with a significantly smaller number of degrees of freedom, especially in an elastic problem. It is also concluded that the improved ZZ recovery technique captures the plastic deformation problem solution errors more reliably than the standard ZZ recovery technique.

Sign in / Sign up

Export Citation Format

Share Document