Mixed FEM for Time-Fractional Diffusion Problems with Time-Dependent Coefficients

2020 ◽  
Vol 83 (3) ◽  
Author(s):  
Samir Karaa ◽  
Amiya K. Pani
Author(s):  
Haniffa M.Nasir ◽  
Kamel Nafa

We propose a generalized theory to construct higher order Grünwald type approximations for fractional derivatives. We use this generalization to simplify the proofs of orders for existing approximation forms for the fractional derivative.  We also construct a set of higher order Grünwald type approximations for fractional derivatives in terms of a general real sequence and its generating function. From this, a second order approximation with shift is shown to be useful in approximating steady state problems and time dependent fractional diffusion problems. Stability and convergence for a Crank-Nicolson type scheme for this second order approximation are analyzed and are supported by numerical results.


2020 ◽  
Vol 28 (3) ◽  
pp. 147-160
Author(s):  
Andrea Bonito ◽  
Diane Guignard ◽  
Ashley R. Zhang

AbstractWe consider the numerical approximation of the spectral fractional diffusion problem based on the so called Balakrishnan representation. The latter consists of an improper integral approximated via quadratures. At each quadrature point, a reaction–diffusion problem must be approximated and is the method bottle neck. In this work, we propose to reduce the computational cost using a reduced basis strategy allowing for a fast evaluation of the reaction–diffusion problems. The reduced basis does not depend on the fractional power s for 0 < smin ⩽ s ⩽ smax < 1. It is built offline once for all and used online irrespectively of the fractional power. We analyze the reduced basis strategy and show its exponential convergence. The analytical results are illustrated with insightful numerical experiments.


Author(s):  
Michele Benzi ◽  
Igor Simunec

AbstractIn this paper we propose a method to compute the solution to the fractional diffusion equation on directed networks, which can be expressed in terms of the graph Laplacian L as a product $$f(L^T) \varvec{b}$$ f ( L T ) b , where f is a non-analytic function involving fractional powers and $$\varvec{b}$$ b is a given vector. The graph Laplacian is a singular matrix, causing Krylov methods for $$f(L^T) \varvec{b}$$ f ( L T ) b to converge more slowly. In order to overcome this difficulty and achieve faster convergence, we use rational Krylov methods applied to a desingularized version of the graph Laplacian, obtained with either a rank-one shift or a projection on a subspace.


Sign in / Sign up

Export Citation Format

Share Document