singular matrix
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 21)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 1 (3) ◽  
pp. 403-411
Author(s):  
Ery Nurjayanto ◽  
Amrullah Amrullah ◽  
Arjudin Arjudin ◽  
Sudi Prayitno

The study aims to determine the set of the singular matrix 2×2 that forms the group and describes its properties. The type of research was used exploratory research. Using diagonalization of the singular matrix  S, whereas a generator matrix, pseudo-identity, and pseudo-inverse methods, we obtained a group singular matrix 2×2  with standard multiplication operations on the matrix, with conditions namely:    (1) closed, (2) associative, (3) there was an element of identity, (4) inverse, there was (A)-1 so A x (A)-1 = (A)-1 x A = Is. The group was the abelian group (commutative group). In addition, in the group, Gs satisfied that if Ɐ A, X, Y element Gs was such that A x X = A x Y then X = Y and X x A = Y x A then X = Y. This show that the group can be applied the cancellation properties like the case in nonsingular matrix group. This research provides further research opportunities on the formation of singular matrix groups 3×3 or higher order.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2226
Author(s):  
Arif Mandangan ◽  
Hailiza Kamarulhaili ◽  
Muhammad Asyraf Asbullah

Matrix inversion is one of the most significant operations on a matrix. For any non-singular matrix A∈Zn×n, the inverse of this matrix may contain countless numbers of non-integer entries. These entries could be endless floating-point numbers. Storing, transmitting, or operating such an inverse could be cumbersome, especially when the size n is large. The only square integer matrix that is guaranteed to have an integer matrix as its inverse is a unimodular matrix U∈Zn×n. With the property that det(U)=±1, then U−1∈Zn×n is guaranteed such that UU−1=I, where I∈Zn×n is an identity matrix. In this paper, we propose a new integer matrix G˜∈Zn×n, which is referred to as an almost-unimodular matrix. With det(G˜)≠±1, the inverse of this matrix, G˜−1∈Rn×n, is proven to consist of only a single non-integer entry. The almost-unimodular matrix could be useful in various areas, such as lattice-based cryptography, computer graphics, lattice-based computational problems, or any area where the inversion of a large integer matrix is necessary, especially when the determinant of the matrix is required not to equal ±1. Therefore, the almost-unimodular matrix could be an alternative to the unimodular matrix.


Author(s):  
Michele Benzi ◽  
Igor Simunec

AbstractIn this paper we propose a method to compute the solution to the fractional diffusion equation on directed networks, which can be expressed in terms of the graph Laplacian L as a product $$f(L^T) \varvec{b}$$ f ( L T ) b , where f is a non-analytic function involving fractional powers and $$\varvec{b}$$ b is a given vector. The graph Laplacian is a singular matrix, causing Krylov methods for $$f(L^T) \varvec{b}$$ f ( L T ) b to converge more slowly. In order to overcome this difficulty and achieve faster convergence, we use rational Krylov methods applied to a desingularized version of the graph Laplacian, obtained with either a rank-one shift or a projection on a subspace.


2021 ◽  
Vol 13 (9) ◽  
pp. 1751
Author(s):  
Bokun Tian ◽  
Xiaoling Zhang ◽  
Liang Li ◽  
Ling Pu ◽  
Liming Pu ◽  
...  

Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing (CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging. CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency. To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine (FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal likelihood function under the framework of the RVM to obtain the optimal hyper-parameters; the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain several elements whose scattering coefficients are too small and closer to 0 compared to other elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular matrix is replaced with the generalized inverse matrix obtained by the truncated singular value decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the rank of the singular matrix, those elements with small scattering coefficients are extracted and eliminated to obtain more accurate target-areas. Both simulation and experimental results show that the proposed method can improve the computational efficiency and imaging quality of LASAR 3D imaging compared with the state-of-the-art CS-based methods.


2021 ◽  
Vol 336 ◽  
pp. 06027
Author(s):  
Xuanhe Zhao ◽  
Xin Pan ◽  
Yubao Ma ◽  
Weihong Yan

Aiming at the high time complexity and poor accuracy of traditional SVD in hyperspectral recognition. we proposed F-SVD, which introduces the latent factors(F) into the SVD decomposition strategy and uses the correlation between the latent variable and the original variable to improve the singular matrix. Firstly, we used F-SVD to reduce the dimension of visible-near infrared hyperspectral image, and consequently designed a forage recognition model based on XGBoost. When the test set sets 40%, the OA of F-SVD-XGBoost is 91.67%, which takes 0.601s. Compared with the traditional FA-XGBoost and SVD-XGBoost, OA increases 1.98% and 1.67%, and the time consumption decreases 1.369s and 0.522s, respectively. The results show that our model not only effectively extracts the essential features of forage hyperspectral and improves the accuracy of classification, but also has a faster processing speed, so that can efficiently and quickly realize the identification of forage hyperspectral images.


Author(s):  
Mustapha Mokhtar-Kharroubi

We give a form-perturbation theory by singular potentials for scalar elliptic operators on L 2 ( R d ) of order 2 m with Hölder continuous coefficients. The form-bounds are obtained from an L 1 functional analytic approach which takes advantage of both the existence of m -gaussian kernel estimates and the holomorphy of the semigroup in L 1 ( R d ) . We also explore the (local) Kato class potentials in terms of (local) weak compactness properties. Finally, we extend the results to elliptic systems and singular matrix potentials. This article is part of the theme issue ‘Semigroup applications everywhere’.


2020 ◽  
Vol 17 (3(Suppl.)) ◽  
pp. 0994
Author(s):  
Saad Shakir Mahmood

The study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never  approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-version) preserves the symmetric property and the positive definite property without any condition.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Heng Cheng ◽  
Guodong Zheng

In this paper, the improved element-free Galerkin (IEFG) method is used for solving 3D advection-diffusion problems. The improved moving least-squares (IMLS) approximation is used to form the trial function, the penalty method is applied to introduce the essential boundary conditions, the Galerkin weak form and the difference method are used to obtain the final discretized equations, and then the formulae of the IEFG method for 3D advection-diffusion problems are presented. The error and the convergence are analyzed by numerical examples, and the numerical results show that the IEFG method not only has a higher computational speed but also can avoid singular matrix of the element-free Galerkin (EFG) method.


2020 ◽  
Vol 9 (7) ◽  
pp. 4329-4344
Author(s):  
M. Miteva ◽  
L. K. Lazarova ◽  
N. Stojkovik ◽  
A. Stojanova
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document