krylov methods
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 37)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Achiya Dax

AbstractIn this paper we present new restarted Krylov methods for calculating interior eigenvalues of large sparse symmetric matrices. The proposed methods are compact versions of the Heart iteration which are modified to retain the monotonicity property. Numerical experiments illustrate the usefulness of the proposed approach.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tobias Danczul ◽  
Clemens Hofreither

Abstract We establish an equivalence between two classes of methods for solving fractional diffusion problems, namely, Reduced Basis Methods (RBM) and Rational Krylov Methods (RKM). In particular, we demonstrate that several recently proposed RBMs for fractional diffusion can be interpreted as RKMs. This changed point of view allows us to give convergence proofs for some methods where none were previously available. We also propose a new RKM for fractional diffusion problems with poles chosen using the best rational approximation of the function 𝑧 −𝑠 with 𝑧 ranging over the spectral interval of the spatial discretization matrix. We prove convergence rates for this method and demonstrate numerically that it is competitive with or superior to many methods from the reduced basis, rational Krylov, and direct rational approximation classes. We provide numerical tests for some elliptic fractional diffusion model problems.


2021 ◽  
Vol 7 (10) ◽  
pp. 216
Author(s):  
Silvia Gazzola ◽  
Sebastian James Scott ◽  
Alastair Spence

Many successful variational regularization methods employed to solve linear inverse problems in imaging applications (such as image deblurring, image inpainting, and computed tomography) aim at enhancing edges in the solution, and often involve non-smooth regularization terms (e.g., total variation). Such regularization methods can be treated as iteratively reweighted least squares problems (IRLS), which are usually solved by the repeated application of a Krylov projection method. This approach gives rise to an inner–outer iterative scheme where the outer iterations update the weights and the inner iterations solve a least squares problem with fixed weights. Recently, flexible or generalized Krylov solvers, which avoid inner–outer iterations by incorporating iteration-dependent weights within a single approximation subspace for the solution, have been devised to efficiently handle IRLS problems. Indeed, substantial computational savings are generally possible by avoiding the repeated application of a traditional Krylov solver. This paper aims to extend the available flexible Krylov algorithms in order to handle a variety of edge-enhancing regularization terms, with computationally convenient adaptive regularization parameter choice. In order to tackle both square and rectangular linear systems, flexible Krylov methods based on the so-called flexible Golub–Kahan decomposition are considered. Some theoretical results are presented (including a convergence proof) and numerical comparisons with other edge-enhancing solvers show that the new methods compute solutions of similar or better quality, with increased speedup.


Author(s):  
Michele Benzi ◽  
Igor Simunec

AbstractIn this paper we propose a method to compute the solution to the fractional diffusion equation on directed networks, which can be expressed in terms of the graph Laplacian L as a product $$f(L^T) \varvec{b}$$ f ( L T ) b , where f is a non-analytic function involving fractional powers and $$\varvec{b}$$ b is a given vector. The graph Laplacian is a singular matrix, causing Krylov methods for $$f(L^T) \varvec{b}$$ f ( L T ) b to converge more slowly. In order to overcome this difficulty and achieve faster convergence, we use rational Krylov methods applied to a desingularized version of the graph Laplacian, obtained with either a rank-one shift or a projection on a subspace.


2021 ◽  
Vol 17 (17) ◽  
Author(s):  
Amanda Zeqiri ◽  
Arben Malko

In this paper are analyzed behavior and properties for different Krylov methods applied in different categories of problems. These categories often include PDEs, econometrics and network models, which are represented by large sparse systems. For our empirical analysis are taken into consideration size, the density of non-zero elements, symmetry/un-symmetry, eigenvalue distribution, also well/ill-conditioned and random systems. Convergence, approximation error and residuals are compared for the full version of methods, some restarted methods and preconditioned methods. Two preconditioners are considered respectively, ILU(0) and IC(0) by using at least five preconditioning techniques. In each case, empirical results show which technique is best to use based on properties of the system and are backed up by general theoretical information already found on Krylov space methods.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1008
Author(s):  
Begoña Cano ◽  
Nuria Reguera

In previous papers, a technique has been suggested to avoid order reduction when integrating initial boundary value problems with several kinds of exponential methods. The technique implies in principle to calculate additional terms at each step from those already necessary without avoiding order reduction. The aim of the present paper is to explain the surprising result that, many times, in spite of having to calculate more terms at each step, the computational cost of doing it through Krylov methods decreases instead of increases. This is very interesting since, in that way, the methods improve not only in terms of accuracy, but also in terms of computational cost.


Sign in / Sign up

Export Citation Format

Share Document