scholarly journals An Efficient Resource Allocation Mechanism for LTE–GEPON Converged Networks

2013 ◽  
Vol 22 (3) ◽  
pp. 437-461 ◽  
Author(s):  
Chathurika Ranaweera ◽  
Elaine Wong ◽  
Christina Lim ◽  
Ampalavanapillai Nirmalathas ◽  
Chamil Jayasundara
Author(s):  
Chien-Yu Liu ◽  
Kuo-Chan Huang ◽  
Yi-Hsuan Lee ◽  
Kuan-Chou Lai

This study proposes a novel efficient resource allocation mechanism for federated clouds, which takes the communication overhead into consideration, to improve system throughput and reduce resource repacking overhead in the auto-scaling mechanism. In general, when the amount of service requests increases, more and more resources are allocated to satisfy these requests. However, single cloud cannot provide unlimited services with limited physical resources; therefore, the federation of multiple clouds may be one possible solution. In the federated cloud environment, when the workload changes, the resource allocation mechanism could adopt vertical/horizontal scaling fashions to repack the required resource into virtual machines. In the vertical scaling approach, the resource allocation mechanism allocates more resources into virtual machines for improving virtual machine's capability. In the horizontal scaling approach, the resource allocation mechanism allocates more virtual machines for enhancing the virtual cluster's capability. However, frequent resource repacking may reduce the system performance. Therefore, in order to improve system throughput and reduce repacking overhead, the proposed mechanism captures the execution pattern of applications by the profiling system and the resource status by the monitoring system, and then allocates resources for configuring the virtual cluster. Performance for NAS Parallel Benchmarks is evaluated. Experimental results show that the authors' approach could reduce repacking overhead and improve system throughput by comparing two previous works.


2012 ◽  
Vol 9 (3) ◽  
pp. 1287-1305 ◽  
Author(s):  
Carlos Pascal ◽  
Doru Panescu

One of the key design issues for distributed systems is to find proper planning and coordination mechanisms when knowledge and decision capabilities are spread along the system. This contribution refers holonic manufacturing execution systems and highlights the way a proper modeling method - Petri nets - makes evident certain problems that can appear when agents have to simultaneously treat more goals. According to holonic organization the planning phase is mainly dependent on finding an appropriate resource allocation mechanism. The type of weakness is established by means of the proposed Petri net models and further proved by simulation experiments. A solution to make the holonic scheme avoid a failure in resource allocation is mentioned, too.


Sign in / Sign up

Export Citation Format

Share Document