leo satellite
Recently Published Documents


TOTAL DOCUMENTS

1104
(FIVE YEARS 334)

H-INDEX

24
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Pingyue Yue ◽  
Jianping An ◽  
Jiankang Zhang ◽  
Gaofeng Pan ◽  
Shuai Wang ◽  
...  

<div>In view of the development status of the security of LEO satellite communication system, a comprehensive review, induction, and summary is carried out.<br></div>


2022 ◽  
Author(s):  
Pingyue Yue ◽  
Jianping An ◽  
Jiankang Zhang ◽  
Gaofeng Pan ◽  
Shuai Wang ◽  
...  

<div>In view of the development status of the security of LEO satellite communication system, a comprehensive review, induction, and summary is carried out.<br></div>


Author(s):  
Nasrin Razmi ◽  
Bho Matthiesen ◽  
Armin Dekorsy ◽  
Petar Popovski

Author(s):  
S.B. Pichugin

The relevance of the work is associated with the active deployment of low-orbit communication systems and the expansion of research in the field of corresponding satellite systems. A promising low-orbit communication system based on relay satellites with the function (RSRFs) of routing message packets is considered. The low earth orbit communications systems use the BGP protocol and the AAA functionality at the ground station. For assessing the characteristics of RSRF inter-satellite paths, a scenario was created for the message packets arrival from a group of inter-satellite paths to one subscriber path. The corresponding analytical models have been developed using the mathematical apparatus of queuing systems with the simplest flows of requests and exponential distribution of the service time. The RSRF characteristics of a promising low-orbit communication system are predicted. It is proposed to make the mathematical apparatus of analytical models more complicated to take into account the dynamics of displacements and failures of the RSRF in a low-orbit communication system.


Author(s):  
Senbai ZHANG ◽  
Aijun LIU ◽  
Chen HAN ◽  
Xiaohu LIANG ◽  
Xiang DING ◽  
...  

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 65
Author(s):  
Wenliang Lin ◽  
Yaohua Deng ◽  
Ke Wang ◽  
Zhongliang Deng ◽  
Hao Liu ◽  
...  

Low Earth Orbit (LEO) Satellite Internet Network (LEO-SIN) is a promising approach to global Gigabit per second (Gbps) broadband communications in the coming sixth-generation (6G) era. This paper mainly focuses on the innovation of accuracy improvement of simulation modeling of the Doppler Power Spectrum (DPS) of satellite channels in LEO-SIN. Existing DPS modeling methods are based on Rice’s Sum-of-Sinusoids (SOS) which have obvious modeling errors in scenarios with main signal propagation paths, asymmetrical power spectrum, and random multi-path signals with a random Angle of Arrival (AOA) in LEO-SIN. There are few state-of-art researches devoted to higher accuracy of DPS modeling for simulation. Therefore, this paper proposes a novel Random Method of Exact Doppler Spread method Set Partitioning (RMEDS-SP). Distinct from existed researches, we firstly model the DPS of LEO-SIN, which more accurately describes the characteristics of frequency dispersion with the main path and multi-path signals with random AOA. Furthermore, piecewise functions to the Autocorrelation Function (ACF) of RMEDS-SP is first exploited to converge the modeling error supposition with time by periodic changes, which further improve the accuracy of the DPS model. Experimental results show that the accuracy of DPS in our proposed model is improved by 32.19% and 18.52%, respectively when compared with existing models.


2021 ◽  
Vol 13 (24) ◽  
pp. 5180
Author(s):  
Emilio Matricciani ◽  
Carlo Riva ◽  
Lorenzo Luini

In GeoSurf satellite constellations, any transmitter/receiver, wherever it is located, is linked to a satellite with zenith paths. We have studied the tropospheric attenuation predicted for some reference sites (Canberra, Holmdel, Pasadena, Robledo, and Spino d’Adda), which also set the meridian along which we have considered sites with latitudes ranging between 60° N and 60° S. At the annual probability of 1% of an average year, in the latitude between 30° N and 30° S, there are no significant differences between GEO slant paths and GeoSurf zenith paths. On the contrary, at 0.1% and 0.01% annual probabilities, large differences are found for latitudes greater than 30° N or 30° S. For comparing the tropospheric attenuation in GeoSurf paths with that expected in LEO highly variable slant paths, we have considered, as reference, a LEO satellite constellation orbiting in circular at 817 km. GeoSurf zenith paths “gain” several dBs compared to LEO slant paths. The more static total clear-sky attenuation (water vapor, oxygen, and clouds) in both GEO and LEO slant paths shows larger values than GeoSurf zenith paths. Both for rain and clear-sky attenuations, Northern and Southern Hemispheres show significant differences.


Sign in / Sign up

Export Citation Format

Share Document