user pairing
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 98)

H-INDEX

16
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
pp. 72-83
Author(s):  
Zengchao Duan ◽  
Aohan Li ◽  
Norihiro Okada ◽  
Yusuke Ito ◽  
Nicolas Chauvet ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110574
Author(s):  
Bilal Ur Rehman ◽  
Mohammad Inayatullah Babar ◽  
Arbab Waheed Ahmad ◽  
Hesham Alhumyani ◽  
Gamil Abdel Azim ◽  
...  

Orthogonal multiple access schemes based on assignment of communication resource blocks among multiple contenders, although widely available, still necessitate an upper limit on the number of concurrent users for minimization of multiple-user interference. The feature thwarts efforts to cater for pressing connectivity demands posed by modern-day cellular communication networks. Non-orthogonal multiple access, regarded as a key advancement towards realization of high-speed 5G wireless communication networks, enables multiple users to access the same set of resource blocks non-orthogonally in terms of power with controllable interference, thereby allowing for overall performance enhancement. Owing to the combinatorial nature of the underlying optimization problem involving user pairing/grouping scheme, power control and decoding order, the computational complexity in determining optimal and sub-optimal solutions remains considerably high. This work proposes three novel alternative approaches (Randomly, 2-Opt and Hybrid) for arriving at a near-optimal solution for the problem of user pairing/grouping. The algorithms not only offer reduced computational complexity but also outperform orthogonal multiple access and existing schemes reported in the literature for uplink non-orthogonal multiple access systems.


2021 ◽  
Author(s):  
Jianbin Zheng ◽  
Zhifeng Huang ◽  
Hui Song ◽  
Zhikai Liu

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6199
Author(s):  
Yanjun Yan ◽  
Huihui Xu ◽  
Ning Zhang ◽  
Guangjie Han ◽  
Mingliu Liu

Non-orthogonal multiple access (NOMA) has been extensively studied to improve the performance of the Terrestrial-Satellite Integrated Network (TSIN) on account of the shortage of frequency band resources. In this paper, the terrestrial network and satellite network synergistically provide complete coverage for ground users, and based on the architecture, we first formulate a constrained optimization problem to maximize the sum rate of the TSIN under the limited spectrum resources. As the terrestrial networks and the satellite network will cause interference to each other, we first investigate the capacity performance of the terrestrial networks and the satellite networks separately, in which the optimal power control factor expression is derived. Then, by constructing the relationship model between user elevation angle, beam angle and distance, we develop a dynamic group pairing schemes to ensure the effective pairing of NOMA users. Based on the user pairing, to obtain the optimal resource allocation, a joint optimization algorithm of power allocation, beam channel and base station channel resource is proposed. Finally, simulation results are provided to evaluate the user paring scheme as well as the total system performance, in comparison with the existing works.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1161
Author(s):  
Zhenwei Zhang ◽  
Hua Qu ◽  
Jihong Zhao ◽  
Wei Wang

Cooperative Non-Orthogonal Multiple Access (NOMA) with Simultaneous Wireless Information and Power Transfer (SWIPT) communication can not only effectively improve the spectrum efficiency and energy efficiency of wireless networks but also extend their coverage. An important design issue is to incentivize a full duplex (FD) relaying center user to participate in the cooperative process and achieve a win–win situation for both the base station (BS) and the center user. Some private information of the center users are hidden from the BS in the network. A contract theory-based incentive mechanism under this asymmetric information scenario is applied to incentivize the center user to join the cooperative communication to maximize the BS’s benefit utility and to guarantee the center user’s expected payoff. In this work, we propose a matching theory-based Gale–Shapley algorithm to obtain the optimal strategy with low computation complexity in the multi-user pairing scenario. Simulation results indicate that the network performance of the proposed FD cooperative NOMA and SWIPT communication is much better than the conventional NOMA communication, and the benefit utility of the BS with the stable match strategy is nearly close to the multi-user pairing scenario with complete channel state information (CSI), while the center users get the satisfied expected payoffs.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Sharief Abdel-Razeq ◽  
Hazim Shakhatreh ◽  
Ali Alenezi ◽  
Ahmad Sawalmeh ◽  
Muhammad Anan ◽  
...  

Recently, unmanned aerial vehicles (UAVs) have been used as flying base stations (BSs) to take advantage of line-of-sight (LOS) connectivity and efficiently enable fifth-generation (5G) and cellular network coverage and data rates. On the other hand, nonorthogonal multiple access (NOMA) is a promising technique to help achieve unprecedented requirements by simultaneously allowing multiple users to send data over the same resource block. In this paper, we study a UAV-enabled uplink NOMA network, where the UAV collects data from ground users while flying at a certain altitude. Unlike all existing work on this topic, this study consists of two stages. In the first stage, we use the well-known Particle Swarm Optimization (PSO) algorithm, which is a metaheuristic algorithm, to deploy the UAV in 3D space, so that the users’ sum pathlosses are minimized. In the second stage, we investigate the user pairing problem and propose a dynamic power allocation technique for determining the user’s power allocation coefficients, as well as a closed-form equation for the ergodic sum-rate. Results show our PSO-based algorithm prevailing over the Genetic Algorithm (GA) and random deployment methods. The proposed dynamic power allocation strategy maximizes the network’s ergodic sum-rate and outperforms the fixed power allocation strategy. Additionally, the results reveal that the best pairing scheme is the one that keeps uniform channel gain difference in the same pair.


Sign in / Sign up

Export Citation Format

Share Document