The Boltzmann Equation for Bose–Einstein Particles: Velocity Concentration and Convergence to Equilibrium

2005 ◽  
Vol 119 (5-6) ◽  
pp. 1027-1067 ◽  
Author(s):  
Xuguang Lu
2009 ◽  
Vol 135 (4) ◽  
pp. 681-736 ◽  
Author(s):  
Eric A. Carlen ◽  
Maria C. Carvalho ◽  
Xuguang Lu

2011 ◽  
Vol 143 (5) ◽  
pp. 990-1019 ◽  
Author(s):  
Xuguang Lu ◽  
Xiangdong Zhang

2015 ◽  
Vol 13 (06) ◽  
pp. 611-643
Author(s):  
Mingying Zhong

In this paper, we study a quantum Boltzmann equation with a harmonic oscillator for isotropic gases of bosons and fermions, respectively. This model comes from physics literatures (see, e.g., [M. Holland, J. Williams and J. Cooper, Bose–Einstein condensation: Kinetic evolution obtained from simulated trajectories, Phys. Rev. A 55 (1997) 3670–3677]). The distribution function, i.e. the solution, is discrete in the energy variable. We give the classification of equilibria of the equation for bosons and fermions, respectively, and prove the global existence, uniqueness and the strong convergence to equilibrium for solutions of the equation.


Sign in / Sign up

Export Citation Format

Share Document