Quasi-Stationary States for Particle Systems in the Mean-Field Limit

2007 ◽  
Vol 129 (2) ◽  
pp. 241-263 ◽  
Author(s):  
E. Caglioti ◽  
F. Rousset
2020 ◽  
Vol 405 ◽  
pp. 109181 ◽  
Author(s):  
Martin Burger ◽  
René Pinnau ◽  
Claudia Totzeck ◽  
Oliver Tse ◽  
Andreas Roth

2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Hui Huang ◽  
Jinniao Qiu

AbstractIn this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions $$d=2,3$$ d = 2 , 3 . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derived from an interacting particle system subject to both idiosyncratic and common noises. Both the unique existence of solutions to the stochastic KS equation and the mean-field limit result are addressed.


2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Carina Geldhauser ◽  
Marco Romito

AbstractWe prove a mean field limit, a law of large numbers and a central limit theorem for a system of point vortices on the 2D torus at equilibrium with positive temperature. The point vortices are formal solutions of a class of equations generalising the Euler equations, and are also known in the literature as generalised inviscid SQG. The mean-field limit is a steady solution of the equations, the CLT limit is a stationary distribution of the equations.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Pierre Roux ◽  
Delphine Salort

<p style='text-indent:20px;'>The Nonlinear Noisy Leaky Integrate and Fire (NNLIF) model is widely used to describe the dynamics of neural networks after a diffusive approximation of the mean-field limit of a stochastic differential equation. In previous works, many qualitative results were obtained: global existence in the inhibitory case, finite-time blow-up in the excitatory case, convergence towards stationary states in the weak connectivity regime. In this article, we refine some of these results in order to foster the understanding of the model. We prove with deterministic tools that blow-up is systematic in highly connected excitatory networks. Then, we show that a relatively weak control on the firing rate suffices to obtain global-in-time existence of classical solutions.</p>


2008 ◽  
Vol 190 (3) ◽  
pp. 517-547 ◽  
Author(s):  
E. Caglioti ◽  
F. Rousset

Sign in / Sign up

Export Citation Format

Share Document